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Abstract

Lack of detailed data on product characteristics and quality change poses a chal-

lenge for the accurate aggregation of changes in the real volumes of consumption,

production, and trade flows. To tackle this problem, we propose a method that al-

lows us to identify demand and infer unobserved quality change using data only on

prices and market shares, without the need for external cost shock instruments or

strong assumptions on the covariance between supply and demand shocks. We also

characterize the contribution of changes in quality, price, and variety entry/exit to the

aggregate price index for general invertible demand systems, generalizing the stan-

dard results derived in the CES case. We apply our strategy to compute the US import

price index based on the Kimball demand, allowing for heterogeneity in substitutabil-

ity across products. We find that quality change on average lowers the inflation in

import prices by around 0.7% annually. To further validate our approach, we show

that it estimates price elasticities and quality changes similar to those found by the

standard mixed logit (BLP) demand in data on the US auto market, without relying

on the information on product characteristics and price instruments.
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1 Introduction

Aggregate price indices allow us to translate changes in the volumes of production, con-
sumption, imports, or exports into welfare-relevant measures of real economic activity.
The data used to construct these measures often record volumes and unit values at the
level of industry or product classifications but fail to account for changes within these
units, such as entry and exit of goods or shifts in their characteristics. While statisti-
cal agencies attempt to adjust for such within-unit quality changes, much of this variation
remains unmeasured.1 Consider, for example, the task of measuring the prices of U.S. im-
ports, where it has proven hard to collect systematic data on product characteristics. The
official BLS series for import prices suggests a nearly five-fold increase for computer and
peripheral equipment goods relative to US producer prices in this sector between 1989
and 2018.2 Over this period, US imports in this sector rapidly rose relative to domestic
production, implying potential mismeasurement in import quality.

To address this problem, academic work has developed alternative methods to ad-
just for the entry and exit of imported varieties (Feenstra, 1994; Broda and Weinstein,
2006) and quality changes inferred from variations in residual demand (Khandelwal,
2010; Hallak and Schott, 2011). While widely adopted in many research applications,
these approaches still suffer from two limitations. First, they heavily rely on the assump-
tion of Constant Elasticity of Substitution (CES) demand, which rules out heterogeneity
in patterns of cross-product substitutability. Moreover, these methods require identify-
ing substitution elasticities without access to plausibly exogenous variations in prices,
often assuming that supply and demand shocks are uncorrelated—a risky assumption if
quality and production costs are in fact intertwined.

In this paper, we develop and implement novel strategies to construct aggregate price
indices that account for quality and variety change without restrictive assumptions on the
demand system or on the covariance structure between supply and demand shocks. Our
first contribution is to generalize the recent unified CES price index of Redding and Wein-
stein (2020a) and the Feenstra (1994) variety correction beyond the CES model, showing
how the heterogeneity in cross-product elasticities of substitution affects the contributions
of quality and variety to changes in the aggregate price indices. Given the data limitations
often faced, we further specialize our results to a family of income-invariant (homoth-

1This problem is sometimes referred to as the quality change bias in the measures of inflation in the cost-
of-living (Boskin et al., 1998; Gordon and Griliches, 1997). For an overview of techniques used by statistical
agencies to adjust for product quality, e.g., see Triplett (2004).

2See Figure D.5 in Appendix D.3.2. This observation was made Robert J. Gordon in a presentation at
the conference in honor of Zvi Grilliches at the College de France in May, 2024.
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etic) demand that allow some elasticity variation while reducing the data requirements
for estimation (Matsuyama, 2022).3 These preferences include specifications like Kimball
(1995a), CRESH (Hanoch, 1971), and HSA (Matsuyama and Ushchev, 2017), which have
been gaining traction in recent empirical work (e.g., Edmond et al., 2023; Berlingieri et al.,
2022; Grossman et al., 2023).

Our second contribution is to propose a method for estimating demand systems using
panel data on prices and market shares, without requiring detailed product characteristics
or external cost instruments. The idea behind our approach is to apply the dynamic panel
(DP) methods to the joint evolution of product-level prices and quality (demand) shocks.
More specifically, we assume that future shocks to the quality of each product, condi-
tional on current quality, are uncorrelated with current product prices.4 We show that
this assumption is satisfied in most standard models that rule out dynamic pricing (e.g.,
when prices are flexible and demand does not directly depend on past prices). In such
settings, firms choose current prices to maximize current-period profits irrespective of fu-
ture demand shocks. Accordingly, we can derive moment conditions that identify flexible
demand systems in the presence of correlated supply and demand shocks. The only ad-
ditional requirement is that product prices exhibit strong autocorrelation over time due
to persistent cost shocks.

We use our strategy for measuring the price index of imports in the US. To account
for the substitutability between domestic and imported varieties of products, we build
a dataset disaggregating total consumption to those sourced from the US and each of
its trading partners at the level of 156 (5-digit) NAICS industry codes. We assume a
nested demand structure in which consumers evaluate the varieties of products sourced
by different origin countries, including the US, using a CES or Kimball aggregator, where
the latter allows heterogeneity in cross-product substitutability. We take unit values of
imports as our measure of price in the customs records and the US producer price index
(PPI) for each industry as the price of the corresponding domestic variety. We express the
quality of the varieties supplied by all other origins relative to the US, assuming that the
US PPI accurately accounts for quality improvements.5

3For another generalization of the Feenstra variety correction to alternative family of demand systems,
and its application to the cereal market in the US, see Foley (2021).

4This strategy has been combined with complementary instrumental variables in estimating rich de-
mand systems in several IO applications (e.g., Grennan, 2013; Lee, 2013; Sweeting, 2013), and in estimating
firm-level production functions (Caliendo et al., 2020). We note that our assumptions about the dynamics
of demand shocks are also in line with Redding and Weinstein (2020a), who find a strong persistence in
demand shocks in the Nielsen barcode data.

5The BLS performs multiple quality-adjustment strategies for PPIs that are not used for import prices,
e.g., hedonic regressions on product characteristics (see U.S. Bureau of Labor Statistics, 2024, chapter 14).
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Using the resulting data (1989-2016), we estimate CES and Kimball demand systems
in each industry. We find large magnitudes in the CES estimates based on our approach
compared to those found using the conventional methods that rule out demand and sup-
ply shocks (Feenstra, 1994; Broda and Weinstein, 2006; Soderbery, 2015a). Thus, the con-
ventional estimates likely suffer from an endogeneity bias due to a positive correlation
between quality shocks and prices. Next, focusing on the case of Kimball demand (fea-
turing heterogeneity in substitution elasticities), we find that quality improvements in the
imported products lower the US import price index by over 20% (0.7% annually). Using
CES demand suggests a lower contribution of around 16% (0.5% annually).6

We further validate our method using rich data from the automobile market (1980-
2018) that includes detailed information on product characteristics which provide proxies
for product quality. We first verify our identification assumption by showing that, con-
trolling for current product characteristics, future characteristics are not correlated with
current prices. Furthermore, for both CES and Kimball demands, we show that our iden-
tification strategy leads to similar estimates to those found using a standard cost shock
instrument based on the real exchange rate (RER) variations between the US and each
model’s country of assembly.

Using the auto data, we further compare our estimates for CES and Kimball demand
with the mixed logit demand featuring heterogeneous elasticities (Berry, 1994; Berry et al.,
1995). The estimates based on the Kimball demand system are closely aligned with those
of the mixed logit demand, while those of CES feature a downward heterogeneity bias in
the magnitude of the demand elasticity.7 Compared to the price indices constructed for
the US auto industry based on rich demand systems such as mixed logit and mixed CES,
the Kimball price index appears to provide a better approximation compared to the CES
price index. We lastly examine our inferred measures of quality and show that they are
correlated with characteristics valued by consumers.

Prior Work The role of product quality for the patterns of international trade and spe-
cialization, at the aggregate and at the firm level, has been the subject of a vast body
of theoretical and empirical work (e.g., Linder, 1961, Flam and Helpman, 1987; Hum-
mels and Skiba, 2004; Hallak, 2006; Verhoogen, 2008; Fajgelbaum et al., 2011; Baldwin

6Relying on the standard identification approach ruling out correlated supply and demand shocks,
Berlingieri et al. (2018) also find that quality change accounts for the bulk of the gains from openness accru-
ing from the trade agreements signed by the EU. Using scanner-level data, Redding and Weinstein (2020a)
show that the quality bias is sizable relative to the variety bias.

7Appendix E.3 shows, both theoretically and empirically, that this bias emerges in the presence of a
correlation between the magnitude of the elasticity and the price volatility across products.
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and Harrigan, 2011; Kugler and Verhoogen, 2012; Manova and Zhang, 2012; Martin and
Mejean, 2014; Dingel, 2017; Eaton and Fieler, 2022). Early empirical work on the impor-
tance of quality proxied product quality with unit values (e.g., Schott, 2004; Hummels and
Klenow, 2005).8 As already mentioned, we follow the approach pioneered by Khandel-
wal (2010) and Hallak and Schott (2011) in inferring quality through variations in demand
conditional on price. Our emphasis on heterogeneity in the patterns of cross-product sub-
stitutability is in line with recent work that distinguishes such variations as indicative of
horizontal rather than vertical (quality) differentiation (Di Comite et al., 2014).9

Our paper is closely related to Feenstra and Romalis (2014) who study quality varia-
tions in trade flows across different countries. Unlike ours, their approach requires strict
parametric restrictions on the relationship between quality and income elasticity, on the
production cost of quality, and on the distribution of product quality in order to infer
quality measures. Our paper is also closely related to the recent paper by Redding and
Weinstein (2024), who decompose the different margins of change in US imports, using
a detailed nested CES structure that additionally accounts for firm heterogeneity. Rela-
tive to these studies, our contribution is to offer a novel identification strategy that only
requires assumptions on the dynamics of demand shocks and, crucially, generalizes be-
yond CES demand to allow for heterogeneous elasticities.10

Our paper also contributes to the recent work on the importance of accounting for
demand and taste shocks in cost-of-living indices (e.g., Gábor-Tóth and Vermeulen, 2018;
Ueda et al., 2019; Redding and Weinstein, 2020a; Baqaee and Burstein, 2022).11 In partic-
ular, using US retail scanner data where quality is arguably constant at the barcode-level,
Redding and Weinstein (2020a) derive a formula for the price index under CES demand
that accounts for additional variations in demand due to taste shocks. Our estimation
strategy allows us to apply their approach to settings in which changes in demand par-
tially reflect changes in product quality. We also show that the CES assumption may
overstate the contribution of taste shocks to the indices of cost-of-living.

8Some studies use proxies for quality available for specific sets of products (e.g., wine as in Crozet et
al., 2012) or indirect proxies such as the ISO 9000 management scores (e.g., Verhoogen, 2008).

9We emphasize that our import price index does not provide the full consumption-side welfare effects
of rising imports, since the gains due to imports may partly be compensated by a substitution away from
domestic consumption (see, e.g., Feenstra and Weinstein, 2017; Hsieh et al., 2020).

10In a recent study, Head and Mayer (2021) study counterfactual trade policy exercises in a models with
CES and with mixed logit demand in the context of the original automobile market dataset of Berry et al.
(1995). While they find similar results, they emphasize the importance of incorporating heterogeneity in
pass-throughs through oligopolistic competition under the CES model.

11In addition to changes in taste, the dependence of demand on income (nonhomotheticity) also matters
for the measurement of consumption gains. Here, we abstract from this consideration by focusing on
homothetic demand. Jaravel and Lashkari (2021) provide a method for tackling this problem based on
cross-sectional consumption data.
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Finally, a growing body of work in trade and macro goes beyond the standard CES
assumption and allows for variations in price elasticities through specifications such as
Kimball and HSA demand to study variable markups and pass-through (e.g., Amiti et al.,
2019, Baqaee and Farhi, 2020, Wang and Werning, 2020, Matsuyama and Ushchev, 2022).12

Typically, prior work has inferred the parameters of these demand systems through cal-
ibration, by matching specific moments of interest in the data. To our knowledge, our
paper is the first to identify the parameters of such demand systems using data on ob-
served prices and market shares.13

Outline The paper is organized as follow. Section 2 presents the homothetic demand
systems we consider, our approach to their identification, and our theoretical results on
the change in their aggregate price index. Section 4 presents the results of our estimation
approach in the benchmark setting of the US automobile market. Section 3 reports our
empirical results from the trade data and quantifies the gains from quality. We conclude
in Section 5.

2 Theory

2.1 Environment

We consider a setting in which we observe data on prices and expenditure shares (or
quantities) in a set I of different products (goods or services) consumed in the aggre-
gate, over a number of discrete time points t ∈ {0, · · · , T − 1}. Let (st)

T−1
t=0 denote the

sequence of expenditure shares, where s ≡ (si)i∈I stands for the vector of expenditure
shares chosen by the consumer(s). Similarly, let (pt)

T−1
t=0 denote the sequence of prices,

where p ≡ (pi)i∈I stands for the vector of prices faced by the consumer(s) in the set of
available products. We begin our analysis in Section 2.2, assuming that the set of availabe
products remains constant throughout, but generalize our setting in Section 2.4.1 to allow
for product entry and exit.

12For instance, allowing for variable markups, Feenstra and Weinstein (2017) and Edmond et al. (2015),
among others, show that pro-competitive effects of trade liberalization are quantitatively relevant in the
US and Taiwan, respectively. Since we use aggregate trade data, we cannot directly speak to this margin.
However, when we apply our method at the firm-level, we can provide measures of markups based on our
estimated price elasticities. In our application to the US auto market, we show that our estimated markups
are in line with those found by Grieco et al. (2021) using BLP demand.

13For an alternative approach to the estimation of HSA demand, see Kasahara and Sugita (2021).
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Assumptions and Definitions We assume a representative household choosing the quan-
tities to consume at each point in time, given the observed price pit for each product i ∈ I,
as well as a vector of characteristics xit that impacts their demand but remains unob-
served in our data. We further assume that household preferences are characterized by
a utility function u = U (qφ) where the vector qφ ≡ (eφi qi)i∈I denotes quality-adjusted
quantities. The variable φi ≡ φ̃ (xi) for each product i characterizes the quality of the
product, defined as a function of product characteristics xi, and accounts for how quality
shifts household demand.14 Correspondingly, we define the vector of quality-adjusted
prices pφ ≡ (e−φi pi)i∈I across products. Importantly, between each consecutive time pe-
riod t − 1 and t, we assume that there exists a set Ot of products in which the average
product quality remains the same. Accordingly, let the vector ϖt ≡ (ϖit)i∈I with weights
defined as ϖit ≡ 1

|Ot|I {i ∈ Ot} characterize this set, such that ∑i∈I ϖit (φit − φit−1) = 0.15

Based on the above assumptions, we can characterize household preferences using a
Hicksian demand system qφ = q̃ (pφ; u) as a function of the vector of quality-adjusted
prices and total expenditure y. Correspondingly, we define the vector of expenditure
shares s = s̃ (pφ; u) such that sit ≡ piqi/ ∑i′ pi′qi′ . Define the collection (Allen-Uzawa)
cross-product elasticities of substitution between two distinct products i and j as

σij ≡
1
sj

∂ log q̃i

∂ log pj
, i ̸= j. (1)

Since elasticities are symmetric (σij = σji), we can accordingly define a symmetric matrix
Σ ≡

[
σij
]

with the additional definition

σii ≡
∑j ̸=i sjσij

1 − si
. (2)

As we will see, the matrix of cross-product elasticities Σ plays a key role in our approxi-
mations of the price index throughout the paper. In the special case of the CES demand
system, the matrix of cross-product elasticities simplifies to a constant matrix Σ ≡ σ 11′,
where 1 denotes a unit vector.

14In the empirical settings considered here, each product encompasses a collection of similar goods and
services, such as a product classification code in trade statistics, a commodity classification in macro data, or
an automobile model with several potential trims (varieties). To the extent consumers value variety, changes
in quality may, in part, result from variations in the set of finer varieties included within each product.
We assume that this information is included in the vector of characteristics xit. We further differentiate
our setting from those that consider products at the barcode level in retail scanner data, where product
characteristics remain constant over time. In such cases, the demand shifter φit captures demand shocks
driven by changes in product appeal (consumer taste) (e.g., Redding and Weinstein, 2020a).

15Note that we can easily generalize this assumption by considering the case in which the average quality
change between the two periods over this set, ∑i∈I ϖit (φit − φit−1) = ∆φot is some known value ∆φot.
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2.2 Price Index with Changing Quality under Income Invariance

We begin by characterizing the change in the price index between any two consecutive pe-
riods under the assumption of income invariance (homotheticity) in demand. In Section
2.2.1 below, we present our results for general income-independent preferences. As will
be shown, these results require full knowledge of the matrix of cross-product elasticities
of substitution, which may not be feasible in many macroeconomic settings. Therefore,
in Section 2.2.2, we specialize our results to a family of income-invariant preferences that
imposes simplifying constraints on the structure of this matrix, thereby facilitating their
estimation using datasets commonly available in macroeconomic settings.

2.2.1 Characterziation for General Income-Invariant Preferences

Assuming income-invariant preferences, we can write the demand system q̃ (pφ; u) =

q̃ (pφ) Q (u), as the product of unit demand function q̃ (pφ) and a monotonic function
Q(u) of utility (canonical cardinalization), and the expenditure share function s̃ (pφ; u) =
s̃ (pφ), as a function independent of utility. We can also write the corresponding expen-
diture function as the product of a price index (unit expenditure) function P (pφ) and the
canonical cardinalization Q(u) (Diewert, 1993). Moroever, in this context, the own-price
elasticity is given by ∂ log q̃i

∂ log pi
= −σii(1 − si), and the matrix of cross-product elasticities Σ

provides a complete local characterization of the demand system. This allows us to con-
struct an approximation of the change in the price index between each two consecutive
periods t − 1 and t using this matrix and the changes in the observed expenditure shares
across products, as presented in the following proposition.

Proposition 1. (Approximate Price Index for Income-Invariant Preferences) Assume that the
demand system is homothetic, satisfies the connected substitute property of Berry et al. (2013),
the corresponding price index is continuously differentiable in prices, and all products remain
available between periods periods t − 1 and t. Then, the change in the log price index between the
two periods can be approximated as

∆ log Pt = ∑
i

ϖit∆ log pit + ∑
i,j

ϖit
1

σii,t−1 Ψ−1
ij,t ∆ log sjt + O

(
δ3
)

, (3)

where ∆ log zt ≡ (log zit − log zit−1) and zt ≡ 1
2 (zt−1 + zt) denote the log difference and

the mean of variable zt between two consecutive periods, where ϖt is the vector of the weights
corresponding to the base set Ot between these two periods, where we have defined the matrix Ψt
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through

Ψt ≡ I −
(
Σt − σt 1

′) diag (st)
(

Σd
t − I

)−1
, (4)

with σt and Σd
t denoting the vector of diagonal elements of Σ from Equation (2) and the corre-

sponding diagonal matrix, respectively, and where 1 and I are the unit vector and matrix, respec-
tively. The approximation error in Equation (3) is δ ≡ max {maxi∈Ot {|∆ log pit|} , maxi∈I {|∆ log sit|}}.

Proof. As the complete proof presented in Appendix B.1 (on page A18) shows, at any
point τ ∈ (t, t − 1) along smooth paths of quality adjusted prices pφ

τ between the two con-
secutive periods t− 1 and t, the matrix Ψτ satisfies d log sτ = −Ψτ

(
Σd

τ − I
)
(d logpτ − ∆φτ).

From Berry et al. (2013), we know that if the demand system satisfies the connected sub-
stitute property, the demand system - and thus also the matrix Ψτ - is invertible. Applying
the condition implied by the change in the quality of products in the base set, ϖ′

t dφτ = 0,
it follows that

d log Pτ = ∑
i

ϖitd log piτ + ∑
i,j

ϖit
1

σii,τ − 1
Ψ−1

ij,τ d log siτ. (5)

The desired result follows as a second-order approximation of Equation (5).

Let us consider CES preferences, where all cross-product elasticities of substitution
are constant, σij,t ≡ σ, and thus the matrix of cross-product elasticities is Σt ≡ σ11′.
Substituting this in Equation (4), we obtain σt ≡ σ1, Σd

t =σI , and Ψt = (σ − 1) I . In this
case, the expression in Equation (5) simplifies to

d log Pτ = ∑
i

ϖitd log piτ +
1

σ − 1 ∑
i

ϖit d log siτ,

which we can integrate to find an exact expression for the chage in the price index be-
tween times t − 1 and t:

∆ log Pt = ∑
i

ϖit∆ log pit +
1

σ − 1 ∑
i

ϖit ∆ log sit. (6)

If we consider the base set to be the entire set of products Ot ≡ I with constant weights
ϖij,t ≡ 1

|I| , the above expression represents the logarithm of the CES unified price index
(CUPI) defined by Redding and Weinstein (2020a) for the case with no product entry/exit.
The first term represents the logarithm of the Jevons index, while the second term repre-
sents the logarithm of the geometric mean of the change in log expenditure shares. In
Section 2.4.1 below, we will further generalize this result to account for the contributions
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of entry and exit.
Equation (3) highlights a key deviation from the CUPI when preferences feature het-

erogeneous cross-product elasticities of substitution. As the second term on the right
hand side of Equation (3) shows, we must to adjust the weights in the weighted geomet-
ric mean of changes in the expenditure shares within the common set. This adjustment
requires a weight proportional to 1

2 ∑i ϖit(
1

σii,t−1−1 Ψ−1
ij,t−1 +

1
σii,t−1 Ψ−1

ij,t ) ( instead of 1
σ−1 ϖjt)

for each product j ∈ I.
The change in the price index can be decomposed into the contributions from changes

in price and quality. From Shephard’s lemma, along the smooth paths between t − 1 and
t, we have d log Pτ = ∑i siτd log piτ − ∑i siτdφiτ. We can approximate the integral of the
first term as the contribution of price changes ∆ log Πt ≡ ∑i sit ∆ log pit, leading to the
following approximation for the contribution of quality:

∆ log Φt ≡ ∑
i

(
sit − ϖit

)
∆ log pit − ∑

ij
ϖit

1
σii,t−1 Ψ−1

ij,t ∆ log sjt. (7)

The proof of the proposition further shows that we can approximate the change in the
quality of product i between periods t − 1 and t as

∆φit = ∆ log pit −∑
i

ϖit ∆ log pit +∑
j

(
1

σii,t−1 Ψ−1
ij,t − ∑

i′
ϖi′t

1
σi′ i′ ,t−1 Ψ−1

i′ j,t

)
∆ log sjt +O

(
δ3
)

.

(8)
To apply the above results to general income invariant demand systems, we need to

specify the 1
2 |I| × (|I| − 1)-dimensional matrix of cross-product substitution elasticities

Σt at each point in time. In most empirical applications involving trade or macro data,
data limitations prevents us from estimating demand systems with sufficient richness to
fully characterize these substitution patterns.16 In Section 2.2.2 below, we specialize these
results to a family of income invariant preferences that imposes specific restrictions on the
matrix of cross-product substitution elasticities, facilitating estimation using commonly
available trade or macro data. Nevertheless, these restrictions are much weaker than

16In our validation in Section 4, we consider information on a vector of product characteristics xi for
each product i, we can express rich patterns of cross-product elasticities of substitution in the space of
product characteristics, whose dimensionality grows with the dimensionality of the characteristics space.
For instance, the mixed logit demand system (McFadden, 1974; Berry, 1994) relies on product characteristics
to define the expenditure-share functions as s̃i (p) ≡

∫ exp(−αpi+β′xi)

∑i′∈I exp(−αpi′+β′xi′)
dF (α,β). Note that the mixed

logit preferences are nonhomothetic.
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those imposed by the conventional CES demand system, which assumes constant and
identical patterns of cross-product substitution elasticities.

2.2.2 Preference Specifications

In this section, we introduce a family of income-invariant (homothetic) demand systems
that generalizes the CES demand model in various dimensions and introduces some de-
gree of heterogeneity in the matrix of cross-product elasticities of substitution.

Definition 1 (Homothetic with Aggregator (HA) Demand). An income-invariant (homoth-
etic) demand system belongs to this family if the expenditure share function can be writ-
ten as

s̃i (p
φ) ≡ p̌i di ( p̌i)

∑i′ p̌i′ di′ ( p̌i′)
, (9)

where we have defined the normalized quality-adjusted price p̌i ≡ pφ
i /h̃ (pφ) for a (ho-

mogenous of first degree) aggregator function h̃ (·), and where we have defined a collec-
tion of |I| single-argument, positive-valued, and monotonic functions di (p) decreasing
over some interval p ∈

(
0, p

i

)
, and which satisfy limp→p

i
di (p) = 0 and di (p) = 0 for

p ≥ p
i

where p
i
∈ R+ ∪ {∞}. Two specific subfamilies of HA demand are as follows.

1. Homothetic Implicit Additive (HIA). This system is characterized by an aggregator
function h = h̃ (pφ), which is implicitly defined by the value of h that satisfies one
of the two following conditions, depending on the type of HIA demand

1 =

∑i∈I
∫ di(pφ

i /h)
0 d−1

i (v) dv, directly additive (HDIA),

∑i∈I
∫ pφ

i /h
0 di (v) dv, indirectly additive (HIIA),

(10)

where each condition corresponds to one of the two types of HIA demand: directly
or indirectly additive.

2. Homothetic with a Single Aggregator (HSA). This system is characterized by an aggre-
gator function h = h̃ (pφ), which is implicitly defined by the value of h that satisfies

1 = ∑i∈I
pφ

i
h di

(
pφ

i
h

)
.

Definition 1 for the HA demand nests many well-known income-invariant demand
systems commonly used in the literature, but does not ensure that they are rationalized
by an underlying utility function. The rationalizability is ensured by the restrictions im-
posed by the choices of the HIA and HSA aggregator functions h (·), as shown by Mat-
suyama and Ushchev (2017) (see also Matsuyama, 2022). For instance, both the Kimball
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(e.g., Kimball, 1995b; Klenow and Willis, 2006) and the CRESH demand systems belong
to the HDIA family. The HA family of demand systems departs from the CES model in
two significant ways: 1) it introduces heterogeneity in the matrix of cross-product substi-
tution elasticities, and 2) it goes beyond the highly restrictive independence of irrelevant
alternatives (IIA) property of CES.

Assuming an HA demand system substantially simplifies the structure of the matrix
of cross-product elasticities of substitution, as shown in the following lemma.

Lemma 1. The matrix of cross-product elasticities of substitution for the HA demand systems
introduced in Definition 1 satisfies

σij =


εiε j

ε , HDIA,

εi + ε j − ε, HIIA,

1 +
(εi−1)(ε j−1)

ε−1 , HSA,

i ̸= j, (11)

where we have defined the elasticity of the corresponding demand function for product i as

εi ≡ ẽi

(
pφ

h̃ (pφ)

)
≡ −

p̌i d′i ( p̌i)

di ( p̌i)

∣∣∣∣∣
p̌i=pφ

i /h̃(pφ)

, (12)

and where the expenditure-share-weighted mean of these elasticities are defined as ε ≡ ∑i siεi.

Proof. See Appendix B.1 on page A19.

Lemma 1 shows that the 1
2 |I| × (|I| − 1) matrix of cross-product substitution elastici-

ties for the HA demand systems only depends on |I| variables, characterized by the vector
of elasticities ε ≡ (εi)i∈I . Intuitively, these elasticities capture the degree of substitutabil-
ity of each product with all other products, ruling out the possibility that particular pairs
of products are more substitutable with one another relative to other pairs.17 Neverthelss,
as previously mentioned, the HA demand already allows for much richer patterns of het-
erogeneity in the matrix of cross-product substitution elasticities compared to the CES
benchmark.

Lemma A.4 in Appendix A.5 shows that we can analytically invert the matrix Ψt for
the family of HA preferences. This allows us to specialize the general expression for the
approximate price index for income-independent preferences, as stated in Proposition 1,
to this case. Proposition 2 below presents this result.

17In particular, for any combinations of four products i ̸= i′ ̸= j ̸= j′, we have the following constraints
on the matrix of cross-product substitution elasticities: σij/σij′ = σi′ j/σi′ j′ for HDIA, σij − σij′ = σi′ j − σi′ j′

for HIIA, and (σij − 1)/(σij′ − 1) = (σi′ j − 1)/(σi′ j′ − 1) for HSA.
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Proposition 2. (Approximate Price Index for H(S/I)A Preferences) For the three families of HA
demand systems introduced in Definition 1, the change in the price index can be approximated as
follows:

∆ log Pt = ∑
i

ϖti∆ log pit + ∑
i

ϖit
1

εit−1 ∆ log sit − ∑
i

sitι
o
t

(
1

εit−1 −
(

1
εit−1

))
∆ log sit + O

(
δ3
)

,

(13)

where we have defined 1
εit−1 ≡ ∑i sit

1
εit−1 , ιot ≡ ∑i ϖit ıit , and ιot−1 ≡ ∑i ϖit ıit−1, with ιit ≡

1+1/(εit−1)
1+1/(εit−1)

for HDIA, ιit ≡ 1/(εit−1)
1/(εit−1)

for HIIA, and ιit ≡ 1 for HSA, and where δ is defined as in
Proposition 1.

Proof. The result is a special case of Proposition A.4 in Appendix A.1.3 in the case of
I∗t ≡ I.

Compared to the CUPI, the approximate price index for HA preferences shows sev-
eral adjustments. Firstly, in the geometric mean (across the base set) of the changes in
log expenditure shares, each product is weighted by its average love-of-variety index,
1/ (εit − 1), between the two periods. Moreover, the third term on the right hand side of
Equation (13) accounts for the fact that a shift of expenditure shares within the common
set of products toward those with higher love-of-variety indices 1/ (εit − 1) results in a
lower price index for the consumer.

2.3 Dynamic Panel Estimation of Income-Invariant Demand

In this section, we present an approach for identifying a parametrized homothetic de-
mand system, where data on expenditure shares and prices are assumed to follow Equa-
tion (9). Let us define the normalized quality-adjusted relative price of product i at time t
as

p̌it ≡
e−φit pit

ht
, ht ≡ h̃

(
p

φ
t ; ς

)
. (14)

Note that the space of the quality-adjusted relative price vectors p̌t at time t constitutes a
(|I| − 1)-dimensional manifold in R|I|, since all such vectors satisfy h̃ (p̌) = 1. We now
assume that the demand system satisfies the connected substitutes property as defined
by Berry et al. (2013), making it a bijection from the space of quality-adjusted relative
prices to the space of consumption expenditure shares. As a result, there exists an inverse
demand function π (·; ς) such that p̌it = πi (st; ς).
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Using Equation (14) and the normalization of quality in the base product set, we can
then write quality shocks as a function of observed expenditure shares and prices accord-
ing to18

φit = log p̂it − log π̂i (st; ς) , i ∈ Vt. (15)

where we define the notation log v̂it ≡ log vit − ∑i ϖit log νit as the difference between the
logarithm of variable vit and its unweighted mean within the set of base products Ot.

Equation (15) presents a parametrized demand function that can be estimated in the
data. Needless to say, the key challenge for the identification of this demand system is the
potential correlation between the demand shock, log price, and expenditure shares. We
now turn to our approach for tackling this problem.

2.3.1 Identification Assumptions

We begin by imposing the following restrictions on the stochastic dynamics of the quality
shocks.

Assumption 1 (Dynamics of Demand Shocks). The following Markov process governs the
dynamics of quality (demand) shocks φit for product i at time t:

φit = gi (φit−1;ϱ) + uit, (16)

where uit is a zero-mean i.i.d innovation to the demand shock, and ϱ is a vector of parameters
characterizing the persistence of the demand shock process.19

Equation (16) implies that, despite potential persistence in the process of quality shocks,
these shocks cannot be entirely predicted based on past realizations due to the arrival of
innovations in each period. In our baseline model, we assume that the demand shock
process is a stationary AR(1) process with a product-specific mean:20

gi (φit−1;ϱ) ≡ ρφit−1 + (1 − ρ) ϕi, (17)

18By definition, we have log pit − log ht − φit = log πi (st; ς). Using the condition ∑i ϖit φit = 0 then
leads to Equation (15).

19Note that we can generalize this condition to higher order Markov dynamics, for instance, assum-
ing φit = gi (φit−1, φit−2, · · · ;ϱ) + uit, where the contemporaneous demand shock further depends on its
higher-order lags.

20This model can also account for a process with stationary growth, e.g., a model with gi (φit−1) ≡
φit−1 + γi, such that γi ≡ limρ→1 (1 − ρ) ϕi.
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where ϱ ≡ (ρ,ϕ) is the vector of the parameters of the Markov process, and ϕi constitutes
the expected long-run mean quality of product i.

Next, we introduce our main identification assumption, which excludes the depen-
dence of past decisions by firms and consumers on the current innovation to the demand
shock.

Assumption 2 (Identification Assumptions). Demand shock innovations are zero mean, con-
ditional on lagged log prices (and potentially the latter’s powers):

E [uit| (log pit−1)
m] = 0, 1 ≤ m ≤ D, (18)

where D ≥ 1 denotes the dimensionality of the parameters characterizing consumer demand.
Moreover, we assume that the log price process has a nonzero autocorrelation, i.e., E [log pit−1 log pit] ̸=
0.

In combination with Equations (15) and (16), we can use Equation (18) to derive a set
of orthogonality conditions that allow us to estimate the vectors of parameters ς and ϱ.
This leads to the following moment conditions

E [(log p̂i,t − log π̂i (st; ς)− gi (log p̂i,t−1 − log π̂i (st−1; ς) ; ϱ))× zit−1] = 0, (19)

where zit is an instrument that is orthogonal to the value of the quality innovation uit

for product i at time t, as defined by the expression within the main parentheses. The
instruments zit include lagged values of different powers of log prices (log pit−1)

m for
m ≤ D, a combination of lagged value of the quality shock φit−1 (and potentially its
powers) given by Equation (15), and product dummies, depending on the structure of
the process gi (·;ϱ). For instance, in the AR(1) process considered in Equation (17), we
use the lagged quality shocks φit−1 and product dummies to identify ρ and ϕi’s. The
assumption of nonzero autocorrelation ensures that the lagged values of log prices pro-
vide meaningful instruments for the corresponding contemporaneous values of the same
variables.

Example: CES Demand As an example, let us consider the case of CES demand where,
as already mentioned, we have s̃i (p̌; ς) ≡ p̌1−σ

i , h̃ (p; ς) ≡ ∑i p1−σ
i , and where ς ≡ (σ). In

this case, the inverse demand function can be analytically written as πi (s; σ) ≡ s1/(1−σ)
i .

According to Equation (15), we can write the quality shock as φit = log p̂it +
1

σ−1 log ŝit

. Since a single parameter σ fully characterizes demand, we only need to use the case of
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D = 1 in Equation (18), and thus use the orthogonality conditions E [uit| log pit−1] = 0,
E [uit|φit−1] = 0, E [uit|φit−1] = 0, and E [uit] = 0 for each product i and each time t.

If we further consider the AR(1) assumption in Equation (17), we can leverage the
log-linearity of the model to express the moment conditions in first-differences as

E
[(

∆ log p̂it +
1

σ−1 log ŝit − ρ
(

∆ log p̂it−1 +
1

σ−1 log ŝit−1

))
× zit

]
= 0, (20)

where ∆ log vit ≡ log vit − log vit−1 for any variable vit, and the instruments zit include
double lagged log prices log pi,t−2 (case of D = 1 in Equation 18) and demand shocks
φi,t−2. In this case, the two instruments allow us two identify the two parameters, de-
mand elasticity parameter σ and the demand shock persistence ρ, and we do not need to
estimate the long-run mean of product-level demand shocks ϕ in Equation (17).

2.3.2 Discussion

The Logic of Identification To gain more intuition about the assumption in Equation
(18), we present an explicit model of firm price setting that satisfies this assumption.Consider
the standard environment in which firms set prices flexibly to maximize contemporane-
ous profits. In this scenario, the price at a given point in time should depend solely on the
current variables, and should not depend on the firm’s information or forecasts regard-
ing future product demand and quality. More specifically, let qit denote the quantity of
product i purchased by consumers. This scenario leads to the following process for the
evolution of log prices:

log pit = log mci (qit, φit, wit) + log µi (pt, st,φt) + vit, (21)

where mci (·, ·, ·) is the marginal cost function, which may depend on quantity qit, quality
φit, and exogenous cost shifters wit; µi (·, ·, ·) is the markup function, which may depend
on the vector of current prices pt, market shares st, and demand shocks φt of all products
in the market; and vit is the residual i.i.d. error, which accounts for measurement or firm
pricing error. The price setting Equation (21) satisfies Equation (18) even if the firm knows
its future demand shock innovation.21

More generally, we may consider a model of dynamic price setting where the log price

21Note that under the assumption of flexible pricing, our identification assumption is weaker compared
to the typical assumptions in the application of the dynamic panel methods to production function estima-
tion (see Ackerberg, 2016). In particular, we do not require the assumption that the innovation uit does not
belong to the information set of the firm at time t− 1. With flexible pricing, even if the firm knows its future
demand shock, it does not have an incentive to reflect that in its current pricing decision.

Page 16



additionally depends on the expected value of future cost and demand shocks, as well as
those of the competitors, conditional on the information set Iit of the firm at that moment
in time. In this case, it is sufficient to assume that the firm does not have knowledge of
the future demand shock innovation uit /∈ Iit to satisfy the assumption in Equation (18).
Regardless of the underlying price-setting model, the orthogonality assumption allows
us to rule out a direct functional dependence of the price pit on the future demand shocks
φit+1. Thus, all systematic correlations between log price and the future demand shocks
φit+1 are driven by the persistence of the demand shock process φit.

Deviating from the settings discussed above, our identification assumption may be
violated in several different ways. First, as mentioned above, when the prices are sticky
and firms know their future innovations to their demand shocks. Second, when prices or
market shares are measured with autocrrelated error. Third, when demand shock for each
product dynamically varies as a function of past consumption of that product. Fourth,
when quality evolves endogenously as the result of investments in R&D. In the last case,
our identification could be violated if contemporaneous costs to production simultane-
ously affect innovation costs.

Comparison with Alternative Approaches to Identification Despite potential limita-
tions to our identification assumption, we believe our approach offers an improvement
to the state-of-the-art demand estimation approaches in trade and macroeconomics. In
these settings, we typically only have access to information on prices and quantities. This
prevents us from applying the standard identification approaches that use exogenous cost
shifters wit, which affect prices through marginal cost as in Equation (21), as instruments
to estimate Equation (15). Our identification assumption allows us to use the lagged val-
ues of log price as an instrument for current log price, after controlling for the expectation
of the demand shock conditional on lagged prices.22

In the absence of external cost shock instruments, the conventional approach to es-
timating demand is that of Feenstra (1994) (based on the earlier work by Leamer, 1981).
This approach rules out correlations between demand shocks φit and any shocks to prices
that are not driven by quantity changes. In particular, this assumption is violated if there
is any dependence of the marginal cost on quality in Equation (21), i.e., ∂ log mc

∂φ ̸= 0. Intu-
itively, improvements in quality are often associated with more costly inputs, suggesting
that this assumption is likely violated in practice. Section A.6 in Appendix B provides a

22It is important to note that most cost shock instruments used in practice impact the price or costs
of specific inputs. If firms adjust their input usage in response to these shocks, such substitution may
additionally affect product quality, thereby violating the exogeneity of some cost shock instruments.
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detailed discussion of how our assumptions on the dynamics of demand shocks allow us
to estimate demand without relying on Feenstra (1994)’s identification assumption.

2.4 Extensions

2.4.1 Product Entry and Exit

In this section, we generalize the results in Section 2.2 to account for the scenario where
the set It ⊂ I of products available at time t varies over time. We define the set of contin-
uing products between two consecutive periods as I∗t ≡ It ∩ It−1 . We now let pt and st

denote the vectors of prices and expenditure shares over the extended set of all products I,
letting prices and expenditure shares outside the set of available products to infinity and
zero, respectively. Proposition 1 below generalizes Proposition 1 to accomodate product
entry and exit.

Proposition 3. (Approximate Price Index with Product Entry and Exit) Assume that the demand
system is income-invariant, satisfies the connected substitute property of Berry et al. (2013), the
corresponding expenditure function is twice continuously differentiable in prices, that Ψ−1

ij /sj

remains everywhere bounded for all i ̸= j, and that all products within the base set continue from
period t − 1 to period t, that is Ot ⊂ I∗t . Then, for any income-invarient demand system, the
change in the log price index between periods t − 1 and t can be approximated as

∆ log Pt = ∑
i

ϖit∆ log pit + ∑
i,j∈I∗t

ϖit
1

σii,t−1 Ψ−1
ij,t ∆ log s∗jt +

(
∑

i,j∈I∗t

ϖit
1

σii,t−1 Ψ−1
ij,t

)
∆ log Λ∗

t

+ ∑
i∈I∗t

ϖit

(
∑

j∈It\V∗
t

1
σii,t−1 Ψ−1

ij,t − ∑
j∈It−1\V∗

t

1
σii,t−1−1 Ψ−1

ij,t−1

)
+ O

(
δ3
)

, (22)

where Λ∗
t ≡ ∑i∈I∗t

sit is the expenditure share of the continuing products, s∗t ≡ st/Λ∗
t

is the vector of expenditure shares within the continuing set, and the error is givven by
δ ≡ max

{
maxi∈Ot {|∆ log pit|} , maxi∈I∗t

{∣∣∆ log s∗it
∣∣} , |∆ log Λ∗

t | , maxi/∈V∗
t

{
|∆sit|

2
3
}}

.

Proof. See Appendix B.1 on page A21.

Appendix A.1.2 also shows that the above result is exact in the CES case and leads to

∆ log Pt = ∑
i

ϖit∆ log pit +
1

σ − 1 ∑
i

ϖit∆ log s∗it +
1

σ − 1
∆ log Λ∗

t . (23)
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The above expression is the logarithm of the CES unified price index (CUPI) as defined
by Redding and Weinstein (2020a), assuming that the set of base products corresponds to
the set of continuing set, O ≡ I∗t with constant weights ϖi,t ≡ 1

|I∗t |
. The first two terms

remain the same as before, but the last term now accounts for the Feenstra (1994) CES
correction for the contributions of product entry and exit.

For general income-invariant preferences, Equation (22) shows two additional devi-
ations from the CUPI compared to that in Equation (3). First, as shown in the third
term, we replace the CES love-of-variety index 1

σ−1 with the mean love-of-variety index
1
2 ∑ij ϖit

( 1
σij,t−1−1 Ψ−1

ij,t−1 +
1

σij,t−1 Ψ−1
ij,t
)

between the two periods in accounting for the contri-
bution of the change in the share of the continuing set Λ∗

t . Second, as indicated by the last
term on the right-hand side, we additionally have to account for the potential mismatch
between consumer’s love-of-variety for exiting versus entering products. Specifically, the
price index rises if the latter exceeds the former.

Appendix A.1 offers a step-by-step construction of the proof of the above proposi-
tion. In addition, Proposition A.1 in Appendix A.1.3 generalizes the decomposition of
the change in price index provided in Equation (7) to the case involving product entry
and exit, characterizing the contributions of changes in unit prices, quality, and product
entry and exit. Furthermore, we offer an approximation of the change in the quality of
continuing products, generalizing Equation (8). Finally, Proposition A.4 in the same ap-
pendix extends Proposition 2 to the case involving product entry and exit by considering
the family of HA preferences in Definition 1.

2.4.2 Income Dependence (Nonhomotheticity)

In this section, we further generalize Proposition 3 to construction an expression for a
Universal Price Index (UPI) that approximates changes in the cost of living for general
preferences that may feature income dependence (nonhomotheticity). To achieve this,
we extend the characterization of the demand system by defining the vector of income
elasticities ηt ≡ (ηit) where ηit ≡ ∂ log q̃uc

i (pt; yt) /d log yt and q̃uc
i (p; y) stands for the

uncompensated (Marshallian) demand corresponding to the underlying preferences.

Proposition 4. (Universal Price Index) Assume that the demand system satisfies the connected
substitute property of Berry et al. (2013), the corresponding expenditure function is twice contin-
uously differentiable in prices, that Ψ−1

ij /sj remains everywhere bounded for all i ̸= j, and that
all products within the base set continue from period t − 1 to period t, that is Ot ⊂ I∗t . Then, the
quality-adjusted Divisia price index, the integral of the (expenditure-weighted) mean change in
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log quality-adjusted prices between the two consecutive periods,23 can be approximated as

log Pt ≡
∫ t

t−1
siτd log pφ

iτ =
∆ log PI I

t − κt ∆ log yt

1 − κt
+ O

(
δ3
)

, (24)

where κt ≡ ∑i,j ϖit
1

σij,t−1 Ψ−1
ij,t
(
ηjt − 1

)
and ∆ log PI I

t is given by the expression for the income-
invariant demand in Equation (22).

Proof. See Appendix B.1 on page A22.

Recent work has shown that in the presence of income-dependence, we cannot chain
the conventional indices of the change in the cost of living, such as those constructed
above, due to variations in the benchmark utility u∗

t over time (e.g., Baqaee and Burstein,
2022; Jaravel and Lashkari, 2024). In Appendix A.2 below, we show that our results easily
generalize to the approach proposed by Jaravel and Lashkari (2024), which adjusts for the
contributions of income dependence to the aggregation of prices.24

2.4.3 Category-Specific Price Indices

Let us now consider an arbitrary partitioning of the space of products into disjoint cate-
gories Ik, where each product in I belongs to some category i ∈ Ik for k ∈ K. For instance,
we may consider two disjoint sets IM and ID, representing the sets of imported and do-
mestic products, respectively. Alternatively, we may consider the disjoint sets of different
sectors or industries K in the economy. The only restriction we impose on these categories
is that at least some products from each category should be available to and selected by
the consumer at all times, that is, Ik ⋂ It ̸= ∅ for all k and all 0 ≤ t ≤ T − 1.

Assuming again income invariance, the price index between the two consecutive pe-
riods can be approximated as a Törqvist index of the changes in category-specific price
indices as the following

∆ log Pt = ∑
k∈K

sk
t ∆ log Pk

t + O
(

δ3
)

, (25)

where the category-specific price index is defined as ∆ log Pk
t ≡ ∑i∈Ik

∫ t
t−1 siτ/sτ (d log piτ − dφit)

23As shown, among others, by Jaravel and Lashkari (2024), there exists a level of utility u∗
t between ut−1

and ut such that the change in the cost of living for that level of utility corresponds to the integral of the
Divisia index, that is, Pt ≡ E

(
u∗

t ;pφ
t

)
/E
(

u∗
t ;pφ

t−1

)
+ O

(
δ3).

24In practice, their approach requires access to the cross-sectional data on the composition of consump-
tion across households, which is unfortunately not available in the case of our leading application to the
measurement of the import price index presented in Section 3 below.
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and δ ≡ maxk
{

∆ log Pk
t
}

(see Appendix A.3.1). Crucially, the decomposition in Equation
(25) does not assume that the the preferences are separable into category-specific nests.
The decomposition holds under any arbitrary patterns of substitutability that products
across different groups may have. Therefore, without loss of generality, we can, for in-
stance, decompose the changes in the consumer price index into a domestic and an import
price index, or into price indices corresponding to different sectors/industries, assuming
we have estimates of quality change at the product level.

In the absence of observations on quality change, if we want to use the results of
Section 2.2 to approximate the category-specific price indices using only observations of
expenditure shares and unit prices, we need to know the entire matrix of elasticities of
substitution across products in all product categories. To further simplify the structure
of the matrix of cross-product elasticities of substitution, we can make the additional as-
sumption that preferences are separable across different categories. Under this assump-
tion, Proposition A.2 in Appendix A.3 shows that we can recover an approximation of
the change in cateogry-specific price index ∆ log Pk

t by applying Proposition 3 within each
category. Thus, in this case, we only need to know the within-category matrix of cross-
product elasticities of substitution within each category to approximate the change in the
aggregate price index.

2.4.4 Production-Based Price Aggregation

So far, we have approached the aggregation of prices from a consumption-based perspec-
tive. Alternatively, we can approach the aggregation of prices from a production-based
approach, where we are interested in aggregating prices in order to construct production-
based measures of real aggregate income (e.g., Diewert and Morrison, 1986). Since in Sec-
tion 3 below we apply our approach to the construction of the import price indices, which
covers a wide range of intermediate products, it is desirable to understand the extent to
which our approach remains valid under this alternative approach. Appendix A.4 first
revisits the production-based approach to the construction of the import price index and
shows its role in the measurement of real GDP and real consumption growth. Moreover,
it characterizes the assumptions needed under this approach for our income-independent
(homothetic) specification of import demand to remain valid.
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3 Application: the Price Index of US Imports

We now turn to evaluating the impact of the changes in the size, content, and composition
of US imports for the welfare of consumers in the United States from 1989 to 2018, as
captured by the price index of US import. First, we briefly outline a model of consumer
demand for imports and define the corresponding price index, building on the results of
Section 2.2. We then present the results of estimating the US import demand with the
DP approach and discuss the resulting measures of the change in the price index of US
import.

3.1 Aggregation and The Import Price Index

We assume an income-independent (homothetic) aggregator across all products, as de-
fined in Section 2.1. Moreover, we consider a partitioning of these products across a
number of separable categories of products following the discussions in Section 2.4.3,
where each category corresponds to a given industry (see Appendix A.3 for more de-
tails). Within each industry, we identify varieties with the country of origin (Armington
assumption), whether sourced domestically (from the US) or from various trade partners
exporting their products to the US within that industry.

Within each industry, we consider a parameterized aggregator across these different
varieties that belongs to the HDIA family, as defined by Equations (9) and (10). Specifi-
cally, we consider Kimball aggregators Qk

t in each industry k, which aggregate the vector
q

φ,k
t of quality-adjusted quantities for product varieties within that industry (Kimball,

1995a). This aggregator is implicitly defined according to the constraint

∑
i∈Ik

K

(
qφ

it

Qk
t
; ςk

)
= K (1; ςk) , (26)

where K(·; ςk) is the Kimball function, parameterized by a vector ςk, which satisfies K (q̌) ≡∫ q̌
0 d−1 (v; ς) dv for the corresponding demand function d (·; ς) ≡ di (·) used in Equations

Equations (9) and (10). We consider a number of different parameterizations of the Kim-
ball function, characterized by the Kimball elasticity functions:

ẽ ( p̌; ς) ≡ − K′ (q̌; ς)
q̌ K′′ (q̌; ς)

∣∣∣∣∣
q̌=d( p̌)

, (27)

where we have used the definition of the demand elasticity function ẽ (·) in Equation (12),
along with the demand relations K′(q̌; ς) = d−1(q̌; ς) and q̌ = d ( p̌; ς). Given our assump-

Page 22



tions on the Kimball function K(·; ς), the elasticity function ẽ ( p̌) is positive-valued for
all p̌ < p̌.25 Appendix A.5.3 provides the different families considered, which include
CES (as a benchmark with an isoelastic Kimball function) and three alternative fami-
lies: Klenow and Willis (2006), Finite-Infinite Limit FIL), and Finite-Finite Limit (FFL).
These vary depending on whether the elasticity function remains finite as relative quality-
adjusted prices approach zero and/or infinity. Throughout, our baseline specification will
be the FFL case, in which the Kimball elasticity converges to two finite constants in the
limits as the quality-adjusted quantity approaches zero or inifinity.

To compute the aggregate import price index from Equation (25), we need to compute
the change ∆ log Pk

t in the logarithm of the price index for each industry k, relying on the
results of Section 2.2. As discussed below, we first estimate the Kimball demand system
separately for each industry across all varieties, including the domestic ones, using the
technique presented in Section 2.3. We then rely on the results of Section 2.4.3, which
imply that the price index for each industry can be approximated to the second-order
by the convex combination of the price indices of two product categories: domestic and

imported, following ∆ log Pk
t ≈ sk,D

t ∆ log Pk,D
t + sk,M

t ∆ log Pk,M
t . As we will see, we can

directly observe the price index of domestic goods ∆ log Pk,D
t in the data, allowing us to

find the industry-specific import price index as

∆ log Pk,M
t ≈ 1

sk,M
t

(
∆ log Pk

t − sk,D
t ∆ log Pk,D

t

)
. (28)

We then aggregate the industry-specific import price indices using Tornqvist weights.

3.2 Data and Estimation

Customs records provide information about the composition of US imports at a fairly
detailed (10-digit) level of disaggregation. Unfortunately, information on domestic con-
sumption is not available at the same level of detail. To solve this problem, following
Broda and Weinstein (2006), most of the prior work assumes that domestic and imported
components of consumption are separable and focus on characterizing the demand solely
among the imported goods. However, in so far as we are interested in accounting for pat-
terns substitutability to infer quaility change, we may not wish to abstract away from the
potentially direct substitutability between domestic and imported varieties within each

25We may consider additional constraints that imply this function is also nonincreasing and is smaller
than unity, implying price elasticities of demand that exceed unity and are nondecreasing in quantity (sat-
isfying Marshall’s Second Law of Demand).
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product/industry. To account for such substitutability patterns, we use the available in-
formation on the composition of the US domestic consumption to construct a dataset that
contains information on both domestic and imported sales in the US at a more aggregate
level.

We measure domestic sales as the gap between domestic production and net exports.
We first measure domestic production and prices using data from the NBER-CES Manu-
facturing Industry Database and the BEA’s "Gross Output by Industry" tables, covering
the period from 1989 to 2018. The NBER-CES Manufacturing Industry Database provides
annual data on shipments (vship, total value of shipments) and prices (piship, sectoral
price indices) for U.S. manufacturing sectors, classified at the 6-digit level of the North
American Industrial Classification System (NAICS) (Becker et al., 2021). We aggregate
this data to the 5-digit NAICS level using a standard Tornqvist formula to align it with
the level of aggregation used in trade data. For non-manufacturing sectors such as farm-
ing and mining, we use gross output and corresponding price indices from the BEA.26

We then integrate the domestic production data with U.S. Census Bureau import and
export data from 1989 to 2018 to calculate the domestic sales. The U.S. Census Bureau
provides detailed information on trade flows by HS-country-year. A key challenge in
combining the production and trade data is ensuring a time-consistent mapping between
industry and product codes. To address this, we use the latest version of the Pierce and
Schott (2012) algorithm to create time-consistent 10-digit HS codes. Following Amiti and
Heise (2021), we map these HS codes to the 5-digit NAICS 2012 classification.

Using this concordance, we calculate the domestic sales of U.S. products for each in-
dustry by subtracting exports from total shipments. In cases where this results in negative
values, we assume that all domestic consumption is imported and assign a value of zero
to domestic sales of U.S. products. To measure domestic absorption, we subtract exports
and add imports to total shipments.27

The final dataset covers 155 time-consistent industries across manufacturing, farm-
ing, and mining sectors from 1989 to 2018. We identify product varieties by country of
origin within each 5-digit NAICS sector. This allows us to construct data on the set of
imported varieties for each sector using U.S. Census Bureau import data. A detailed de-
scription of the construction of the variables used in this section, along with robustness

26Data on farming and mining sectors from BEA are reported at the “Summary” level, which is more
aggregate relative the 5-digit NAICS level.

27We adjust our measure of domestic sales of U.S. firms for the presence of re-exports in order not to
underestimate it. We measure U.S. exports using Domestic Exports as defined by the U.S. Census Bureau
(Total Export minus Foreign Exports). Domestic absorption is not affect by this adjustment because re-
exports also enters in imports, thus, not affecting the net exports. Independently of how it is constructed,
domestic absorption is always positive, as expected.
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Table 1: CES and Kimball Elasticities

Kimball - DP CES - DP CES - FBW
Mean 17.0 6.31 3.40

(0.120) (0.009) (0.005)
Median 4.70 4.27 2.58

(0.023) (0.072) (0.057)
Weighted Mean 3.11 5.99 4.62

(0.005) (0.009) (0.008)
5th percentile 1.82 1.72 1.70
25th percentile 3.07 2.93 2.11
75th percentile 9.16 7.44 3.64
95th percentile 48.5 18.3 6.54

Note: The table reports the mean, median, the expenditure-weighted average, and the 5th, 25th, 75th and 95th percentiles of the
distribution of the elasticity of the demand function for both the Kimball and CES specifications. For the Kimball specification, we
can compute the elasticity for each variety at each moment in time while, in the CES case, each variety-time pair is associated with the
corresponding sectoral CES elasticity. For the CES case, we report the DP and the BW estimates. Standard errors are bootstrapped.

tests comparing our data to the more aggregate industry definitions from the BEA annual
Input-Output tables, is provided in Appendix D.1.

We first estimate the CES elasticity of substitution across product varieties in each in-
dustry. We use our Dynamic Panel (DP) approach using the moment condition in Equa-
tion (20), and compare our estimates against those found using the conventional Feenstra
(1994) and Broda and Weinstein (2006) estimator (henceforth FBW). We next apply the
DP approach to the Finite-Finite Limit (FFL) specification of the Kimball preferences. We
use the moment conditions in Equations (19) and (20) with lagged log prices and quan-
tities, their quadratic and third power as instruments. For expressing the quality of the
imported varieties and the computing the price index, we use the U.S. variety as basesline
product.28

3.3 Estimates of the Elasticitiy of Substitution

Table 1 compares the elasticity of the HA demand function εi defined in Equation (12),
as estimated by the two models (Kimball vs. CES) and the two different strategies (DP

28For the purpose of estimation, in case FBW fails to converge, we use any continuously imported variety
over the period from 1989 to 2018 within each industry as the normalizing product. In practice, this restricts
the possibility to the major advanced economies and few other exporters. In case DP fails to converge or the
estimated values were not feasible, we use the moment conditions in Equations (19) and (20) with lagged
log prices and quantities and their quadratic power as alternative set of instruments. When a different
variety is used as normalizing product, quality is still expressed relative to the U.S. variety. In the few cases
the domestic sales of U.S. products become negative and the U.S. variety disappears, we proceed as follow:
we first use Canada as baseline product; we then estimate a trend in the U.S. quality; we then normalize
quality using the U.S. as baseline product and project its quality for those years in which it does not appear.
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vs. FBW) across different industries.29 First, note that comparing the magnitudes across
different identification methods for the CES case (in which εi ≡ σ is the constant elas-
ticity parameter), we find that the elasticities estimated using DP are larger compared to
those obtained using the FBW method across all the moments considered. As discussed
in Section 2.3.2, the FBW method assumes uncorrelated demand and supply shocks–an
assumption that is likely to be violated when marginal cost depends on quality. The re-
sulting positive correlation between demand and supply shocks should lead to a down-
ward bias in the elasticities estimated by the conventional method, consistent with the
results in Table 1.30

We now turn our attention to the estimated elasticities for the Kimball model and com-
pare them to the corresponding CES estimates.31 Table 1 compares different moments of
the distribution of elasticities across varieties between Kimball and CES estimates.32 We
find that the estimates under the Kimball demand system are larger in terms of the mean,
median, and all other moments of the distribution. This result suggests that ignoring the
heterogeneity in elasticities across varieties leads to a bias in the estimated demand elas-
ticity at the variety level. Figure 1 orders all industries from left to right based on the
share-weighted mean elasticity under Kimball, reporting the estimated lower and upper
limits of the Kimball specification, the expenditure share weighted Kimball elasticitiy, and
the estimated CES elasticity for each industry. The solid red line shows a strong positive
correlation between the expenditure-share weighted mean Kimball elasticity and the cor-
responding CES elasticity. However, the estimated lower and upper limits of the Finite-
Finite specification indicate extensive heterogeneity in price elasticities across varieties
within each sector, suggesting that the CES assumption may be a poor approximation of
the elasticity for many individual varieties.33

29Table D.6 in Appendix D.4 reports the same moments for the own-price elasticities ∂ log q̃i/∂ log pi,
and shows that the same conclusions qualitatively hold.

30Appendix D.2 provide a more extensive discussion of the differences between DP and previous identi-
fication methods (FBW and LIML) in the CES case. We use the data from Broda and Weinstein (2006) from
1989 to 2006 and show that also the DP method produces lower elasticities as we aggregate products into
broader categories. Moreover, we confirm the existence of a downward bias in the elasticities estimated
by the two conventional methods. Leveraging the Rauch (1999) classification, we also find that the bias is
stronger for more differentiated products since quality should be more relevant for this type of products
compared to more homogenous ones.

31Table D.5 in Appendix D.4 reports summary statistics of the distribution of the estimated Finite-Finite
Kimball parameters.

32Recall that for the Kimball demand, we can compute the elasticity εit for each variety at each moment
in time while in the CES case we only compute a common value across time and varieties within each
industry. The moments for CES are computed assuming that each variety-time pair within the same sector
has the same elasticity parameter (εit ≡ σ).

33Figure D.9 in Appendix D.4 illustrates the extent of the heterogeneity in elasticities for the motor ve-
hicle parts manufacturing industry (NAICS number 33639). The figure reports the entire set of Kimball
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Figure 1: Comparison with CES Elasticities

Note: In the figure we rank each 5-digit NAICS industry by the expenditure-share weighted mean Kimball elasticity. For each sector,
it display the estimated lower and upper limits of the Finite-Finite Kimball specification (dotted line), the expenditure-share weighted
mean Kimball price elasticity (green circles) and the corresponding CES estimate (orange diamonds). The upper limits are truncated
at 30. The solid red line shows a fitted curve through the CES estimates.

In Appendix , we show that the heterogeneity bias in elasticity estimation arises de-
pending on the covariance between the elasticity parameters and the of the cost shifter.
Specifically, we find that the CES elasticity is below the Kimball mean of the elasticities
if there is a positive covariance between the own-price elasticities of demand and the
volatility of price changes. Figure E.1 confirms that products with higher own-price elas-
ticities of demand are those that have more volatile prices, rationalizing the differences in
estimated elasticity we get between CES and Kimball.

In Appendix E.3, we show that the heterogeneity bias in elasticity estimation depends
on the covariance between the elasticity parameters and the cost shifter. Specifically, we
show that the CES elasticity is lower than the average elasticity in a VES model when there
is a positive covariance between the own-price elasticities of demand and the volatility
of price changes. Figure E.1 confirms that products with higher Kimball own-price elas-
ticities of demand tend to have more volatile prices, explaining the differences in the
estimated elasticity in Table 1.

Lastly, we compute the own-price elasticities of demand and study the relationship be-
tween inferred quality, own-price elasticity, and expenditure share. We infer the measure
of product quality for the Kimball case by inverting the Kimball demand using Equa-
tion (15).34 As expected, Figure 2 shows that within each industry, varieties with higher

elasticities, their expenditure-share weighted and unweighted means, and the CES estimate. Even if the
average Kimball elasticity is close to the CES estimate, the Kimball elasticities range from 1.5 to 4.5 and
decrease with market share.

34See the discussion in Appendix B.2.2 for more details on inverting the Kimball demand.
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Figure 2: Kimball Own-Price Elasticities and Implied Quality
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Note: The left panel plots the binscattered relationship between (log) expenditure share of each variety-time observation and the
inferred quality. The panel in the center plots the binscattered relationship between the Kimball own-price elasticity and the (log)
expenditure share. The right panel directly plots the relationship between the inferred product quality and the Kimball own-price
elasticity. In each panel, we use industry-time fixed effects and cluster the standard errors at the industry level.

inferred quality have higher expenditure shares and lower price elasticities.35

3.4 The Evolution of the US Import Price Index

The left panel of Figure 3 and 2 report the cumulative and annual changes in the ag-
gregate price of US imports from Equation (25), where the changes in the industry-level
Kimball price indices are approximated using the expression in Proposition 2. Leveraging
the result in Proposition 2, we quantify the contribution of quality changes to the dynam-
ics of the aggregate price index of US imports. Improved product quality constitutes a
major source of consumption gains from openness for the US, as quality improvements
substantially reduce the increase in import prices. The import price index declined by
more than 8% (approximately 0.3% annually) over the 1989-2018 period. In contrast, the
index of unit prices of imported goods (∆ log Πt = ∑i sit ∆ log pit) rose by 0.4% annually.
For comparison, the official BEA Personal Consumption Expenditure (PCE) price index
rose by over 1.9% annually during the same period.36 However, the overall change in the
price import price index is significantly lower when accounting for the improved quality
of imported goods. Quality improvements reduced the aggregate import price index by
0.7% annually, suggesting that the official price index overestimate the degree of price
inflation in imported goods.

Using CES preferences instead of Kimball reduces the consumption gains arising from
the product quality channel by 20%, resulting in a substantial underestimation of the
overall gains. The CES aggregate price index for imports shows a decline of around 4%
(0.13% annually), 60% less than the Kimball case. The stark difference with respect to the

35Figure D.11 in Appendix D.4 shows that the same qualitative patterns hold when we control for variety
fixed effects rather than industry-time fixed effects.

36Figure D.10 in Appendix D.4 shows that the year-to-year change in the price component of our aggre-
gate import price index resembles the Import Price Index constructed by the BLS.
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Figure 3: Dynamics of US Import Price Index

Note: The left panel plots the aggregate import price indices for both the CES and Kimball case and their decomposition into the price
and quality components, according Proposition 2. The import price index is constructed using Equation (25). The solid lines represent
the aggregate import price index including both the price and quality components. The dashed line represents the price component
only. The black line refer to the Kimball model, while the blue line to the CES model estimated using DP. U.S. varieties are used to
normalize the quality of imported goods. The right panel plots the quality improvement index at the sectoral level. The index is
constructed using the inferred quality at the variety level aggregated using a tornqvist index.

Table 2: Change in the Import Price Index in the US, 1989–2018

Total Decomposition

PCE Index Price Quality

Kimball CES Kimball CES
Cumulative Log Change (%) -8.25 -4.01 57.8 11.9 -20.2 -15.9
Annual Change (%) -0.28 -0.13 1.93 0.40 -0.67 -0.53

Note: The table reports the cumulative and average annual change in the aggregate import price indices constructed using Proposition
2 and Equation (25), and reported in Figure 3, and their decomposition. U.S. varieties are used to normalize the quality of imported
goods. The third column reports the cumulative and annual change in the Personal Consumption Expenditure price index from the
BEA.

Kimball aggregate price index arises from the different estimates of the role of quality
upgrading. Whereas quality improvement reduces the Kimball aggregate import price
by more than 20%, the corresponding contribution using CES is only 16%. This confirms
the quantitative importance of departing from the constant elasticity assumption in the
standard CES demand systems for evaluating the consumption gains from trade, both in
terms of product quality and variety.

To better understand the drivers of the gap in the inferred price index under CES and
Kimball, Equation (A.33) in Appendix A.1.3 provides a decomposition of this gap to a
number of different components. Appendix D.3 uses this decomposition to show that the
key reason for the underestimation of the price index under the CES specification is the
heterogeneity in the matrix of cross-product elasticities of substitution, which is absent in
the CES model.

Given that our data aggregates imports from product to the industry level, the en-
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try of new products at finer levels of disaggregation appear in our estimates as within-
industry quality improvements. For this reason, we have thus far abstracted away from
the contribution of variety-level entry and exit to import prices. Leveraging the result in
Proposition 3, Table D.7 in Appendix D.3.4 shows that accounting for the variety channel
at this level of disaggregation makes a negligible impact on the import price index. Our
estimates suggest that over the entire period (1989-2018), the aggregate import price in-
dex increased by 0.3% under Kimball and 0.06% under CES, respectively, due to the exit
of some industry-level varieties.

Decomposition across Sectors and Exporters The right panel of Figure 3 reports the
estimated quality improvements in US imports across different sectors. Leveraging the
inferred quality at the variety level, we construct sector-specific Tornqvist indices of the
changes in import quality. Imports of machinery and electrical equipments exhibit the
strongest quality improvement, with a cumulative increase of approximately 200%, fol-
lowed by goods in the textile and apparel sectors.37 The left panel of Figure D.5 in Ap-
pendix D.5 highlights the relative importance of each sector in the aggregate price index
of US imports, showing that 60% of the total gains from quality improvements can be
attributed to quality improvements of goods in the machinery and electrical equipment
industry. Add literature

The left panel of Figure D.6 in Appendix D.4 decomposes quality improvements in
US imports across different sources countries, showing that Chinese products represent
the single largest source of these gains. Approximately 35% of the total cumulative gains
from quality improvement can be attributed to quality improvements of Chinese vari-
eties alone, while the contribution of the OECD countries and all the other exporters to
the overall quality improvement is about 7% and 59%, respectively.38,39 This result is in
line with the prior work documenting that the expansion of Chinese exports is not limited
to the low-skill labor intensive and low-quality goods (Hsieh and Ossa, 2016). The right

37The right panel of Figure D.5 in Appendix D.5 shows that, in the Computer and Peripheral Equipment
sector (NAICS 3341), accounting for quality improvements in imported goods resultsin a decreasing ratio
of the import price index to the producer price index over time. This contrasts with the trends shown in
Figure XX in the Introduction.

38Notice that Figure D.6 does not imply that the quality of OECD countries has not increased over time.
The small contribution of OECD varieties reflects the fact that the quality of OECD countries relative to the
U.S. has not changed over the last three decades.

39Figure D.12 in Appendix D.4 shows the same decomposition for the CES case. Chinese varieties still
represent the major source of quality improvements, accounting for 35% of the aggregate quality improve-
ment. The contribution of OECD varieties is small (2%), while other exporters’ varieties account for the
approximately 63% of the aggregate quality improvement. Departing from the constant elasticity assump-
tion is important not only in evaluating the aggregate role of quality for the gains from trade, but also in
decomposing its sources.
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panel of Figure D.6 further shows that the quality upgrading accelerates after China’s
accession to the WTO, consistent with recent evidence for the substantial effect of the
China’s entry into the WTO on US prices particularly through the extensive margin of
new firms (Amiti et al., 2020). In addition to this extensive margin, Redding and Wein-
stein (2024) also find that the appeal of the products of Chinese firms for US consumers
rose in the 1998-2011 period. 40

4 Validation: US Auto Data

In this section, we validate the Dynamic Panel (DP) approach for demand estimation by
applying it to detailed data on the US automobile market and comparing the resulting
estimates with those found using benchmark methods of demand estimation including
the random coefficient logit model (Berry, 1994; Berry et al., 1995).

4.1 Data

We use data on the US automobile market from 1980 to 2018. The Wards Automotive
Yearbooks contain information on specifications, list prices and sales by model for all cars,
light trucks, and vans sold in the US.41 Vehicle characteristics include horsepower, miles-
per-dollar, miles-per-gallon, weight, width, height, style (car, truck, SUV, van, sport), and
producer. Additional information such as the producer’s region, whether the model is
an electric vehicle, a luxurious brand, or a new design (redesign), complement the data
from the yearbooks.42 We perform standard cleaning to the data following Grieco et al.
(2021) and Berry et al. (1995).43 In addition, for the estimation of the Kimball specification,
we exclude models that have an average price higher than $100k over the entire time
period and drop observations with a change in market share above (below) the 99th (1th)
percentile within each year.

40This result is also consistent with the evidence of the effects of trade liberalization on firm performance.
Prior work has documented that a reduction in (input and output) tariffs spurs innovation, productivity and
product quality (see Shu and Steinwender (2019) for a survey, and see, among others, Brandt et al., 2017;
Fan et al., 2015; Hsieh and Ossa, 2016 for discussions of the specific Chinese case). Schott (2008) show that
Chinese products undertook a rapid process of sophistication. See Appendix ?? for further discussion.

41The Wards Automotive Yearbooks contain information for all trims (variants) of each model. Follow-
ing standard practice, we aggregate all information at the model level based on the median across trims
(Berry et al., 1995; Grieco et al., 2021).

42Table E.1 in Appendix E.1 provides additional details and displays summary statistics for our sample.
43Following Grieco et al. (2021), we drop models with unit price higher than $100k. As in Berry et al.

(1995), we define the new variable “space” as the product between length and width and exclude obser-
vations with a value larger than 6. Similarly, we define the ratio of horsepower per 10lbs and exclude
observations with a value larger than 3.
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We follow Grieco et al. (2021) and Goldberg and Verboven (2001) in the construction of
an exogenous instrument for prices based on exchange rates. We use the lagged bilateral
real exchange rate between the US and the country of assembly of each model, henceforth
RER.44 RER constitutes an arguably exogenous shifter of production costs capturing, in
part, local labor market conditions in the country of assembly. This is because exogenous
changes in local wages are reflected on the local price level and, in turn, on the real ex-
change rate. In addition, exogenous movements in the nominal exchange rate between
the US and the country of assembly represents another source of variation for the RER as
firms can lower their prices when the local currency depreciates.

Testing the Identification Assumption Before applying our methodology for demand
estimation, we rely on the availability of product characteristics to directly test our iden-
tification assumption (Assumption 2) that lagged log prices are uncorrelated with inno-
vations to quality. Appendix E.2, we show that lagged log prices are uncorrelated with
current product characteristics after controlling for lagged product characteristics. In ad-
dition, product characteristics exhibit strong autocorrelations, supporting our Markov
process assumption for the dynamics of product-level quality.

4.2 Demand Specifications and Benchmark Empirical Models

Our goal is validate two distinct aspects of the approach we proposed in Section 2: the
effectiveness of the DP approach as an identification strategy, and the ability of a homo-
thetic with aggregator (HA) demand system, e.g., the Kimball demand system from the
HDIA family, to provide a satisfactory account of heterogeneity in price elasticities. First,
to study the identification aspects, we estimate a standard CES specification using the DP
approach and compare it against the standard instrumental variable approach that uses
cost shocks (RER). Second, we consider Kimball aggregators and compare them against
the current workhorse demand model for differentiated products, i.e., the random coef-
ficient logit model (Berry, 1994; Berry et al., 1995). In this exercise, we also compare the
estimates of the Kimball specification using the two alternative identification strategies:
the DP approach and the standard cost shock IV approach. Below, we discuss the details
of these alternative benchmark models.

44The RER is constructed as the ratio of the expenditure price levels between the assembly country and
the US. The expenditure price levels are available from the Penn World Tables. See Grieco et al. (2021) for
additional details.
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CES Demand To study the properties of the DP identification strategy, we consider the
CES specification that leads to a simple log-linear relationship between market shares and
prices to estimate the elasticity of substitution σ:

log sit = −(σ − 1) log pit + βxit + makei + δt + ϵit, (29)

where makei specifies the producer of product i. Here, xit stands for the vector of product
characteristics, including footprint, horsepower, miles-per-dollar, curbweight, years since
redesign, luxury brand, vehicle type (sport, electric, truck, suv, van). As mentioned, we
can address the endogeneity of prices using a proxy for the costs of production, the real
exchange rate (RER) in the assembly country, as a price instrument and also controlling
for product characteristics and time and producer fixed effects. To compare the two iden-
tification methods, we additionally estimate Equation (29) with the DP approach, using
the moment conditions in first-differences as in Equation (20) and relying on double-
lagged prices and market shares as instruments, together with time and producer fixed
effects.

Kimball Demand Next, we compare an HA demand system in the form of a Kimball
specification against the empirical discrete choice model of differentiated products pre-
sented in Berry (1994) and Berry et al. (1995) (henceforth Mixed Logit). We estimate the
three parametric families of Kimball functions presented in Equations (A.36), (A.35) and
(A.34), using the moment condition in Equation (19). We estimate the Kimball specifica-
tion using both the DP identification strategy and the RER as a cost-shock instrument.45

Importantly, we define the base set Ot in each year to the set of continuing models that
are not redesigned in that year, normalizing quality with respect to the average in this set.
For the DP approach, we use lagged prices and their powers as instruments, as well as
time and producer fixed effects. For the standard IV approach, we use log(RER) and their
powers as the instrument.

Mixed Logit The Mixed Logit demand assumes heterogeneous consumers, whereby
each consumer chooses one product that maximizes their random utility. The utility un

it
of consumer n with total expenditure yn

t from a product i with the vector xit of product
characteristics is given by un

it =
yn

t −pit
pot

+ x′
it β̃

n + ξ̃it +
1

αn ϵn
it, with pot being the price of

the consumption of non-auto (outside) goods. The consumer-specific coefficients αn and
β̃n on price and on characteristics, respectively, depend on demographics and allow for

45Our algorithm for inverting Kimball demand in Appendix B.2.2 uses a reference product in each pe-
riod. We choose the Chevrolet Corvette as this reference product.
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observed and unobserved heterogeneity in consumer taste. We estimate the Mixed Logit
model including the same set of product characteristics as in the CES specification, us-
ing the RER as a cost-shock instrument, and using additional micro moments on choice
based on demographics and car purchases and second choices to estimate the parametric
distributions of taste parameters as in Grieco et al. (2021). Moreover, we also estimate
the Mixed Logit model using the DP approach, relying on on double-lagged prices and
market shares as instruments instead of the RER as a cost-shock instrument.46

4.3 Comparison between Estimates

In Table 3, we report the estimated elasticities found by the different approaches for the
whole sample. The first three columns show the estimates under the CES specification us-
ing OLS estimation, using the RER variable as the cost shock instrument (IV henceforth),
and using our DP approach. The first row shows the estimated CES parameter while the
remaining four columns display different moments of the distribution of the estimated
own-price elasticities. The latter are also reported under the two models with variable
elasticities, the Mixed Logit and the Kimball specifications. In each case, the table also
shows the estimates when using the RER as the cost shock instrument and when using
our DP approach.

As expected, we find that the OLS estimate of the CES price elasticity displays a bias
towards zero due to the positive correlation between demand and price shocks. This is
despite the fact that our specification in Equation (29) includes product characteristics
to control for quality. When we use the cost shock instrument, the magnitude of the
estimated CES elasticity rises relative to its OLS counterpart (1.35 from 4.67). This result
confirms the need for price instruments to correct for the endogeneity bias in this setting.

Importantly, applying the DP approach to the CES specification delivers a CES elas-
ticity of substitution of 4.51, close to the estimated elasticity obtained with the cost shock
instrument. This suggests that our DP approach provides a solution for the endogene-
ity problem without relying on additional costs shocks, and even without controlling for
product characteristics.

How important is accounting for heterogeneity in price elasticities? Comparing the
estimates under the CES and the Mixed Logit models, we find that ignoring the hetero-
geneity in price elasticities leads to a bias toward zero under the former. The median,
the unweighted, and the weighted means of the estimated elasticities are larger under the

46Additional details on the Mixed Logit specification, its estimation, and the definition of its exact price
index in Appendix E.4.
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Table 3: Comparing Own-Price Elasticities

CES Mixed Logit Kimball

OLS IV DP IV DP IV DP
σ 1.35 4.67 4.51

(0.25) (1.47) (0.13)
Own-price Elasticity:
Weighted Mean 4.62 4.46 6.15 6.97 5.60 5.79

(0.00) (0.00) (0.02) (0.03) (0.01) (0.01)
Mean 4.65 4.50 6.94 7.87 8.90 8.68

(0.00) (0.00) (0.03) (0.03) (0.05) (0.05)
Median 4.66 4.51 6.32 7.13 7.41 7.45

(0.00) (0.00) (0.03) (0.04) (0.04) (0.03)
IQR 0.02 0.02 3.57 4.01 3.54 3.16

(0.00) (0.00) (0.05) (0.05) (0.07) (0.06)

Note: The table reports the estimated own-price elasticities from the full sample. Each column corresponds to a different econometric
model: CES OLS, CES IV, CES DP, Mixed Logit IV, Mixed Logit DP, Kimball IV, and Kimball DP. For the VES cases (Mixed Logit and
Kimball) we report a set of moments from the distribution of the estimated own-price elasticities, while for the CES cases, we also
report the estimated price coefficients. We report the mean and the median elasticity together with the expenditure weighted mean
elasticity and the interquartile range. We consider the Finite-Finite case for the Kimball specification. For the Kimball specification,
we compute the own-price elasticities using Equation (??) and (11). For the Mixed Logit specification, we report the demand elasticity
defined as the percent change in sales for a one percent increase in price. We report bootstrapped standard errors for the set of
moments from the distribution of the estimated own-price elasticities. For the CES price coefficeints, standard errors are clustered at
product (model) level. All estimated quantities use the full sample.

Mixed Logit specification compared to the CES. Despite its simplicity, the Kimball speci-
fication also appears to allow for sufficient heterogeneity to circumvent this problem: all
three moments of the distributions of the estimated own-price elasticities under Kimball
are larger compared to the CES, and close to those under Mixed Logit, particularly the
weighted mean and the median. Moreover, for both the Kimball and Mixed Logit speci-
fications, we again find that the elasticites estimated using the cost shock instrument and
using the DP approach are close, providing additional evidence of the validity of the DP
approach.

In the Kimball case, the heterogeneity in elasticities is entirely due to the heterogeneity
in market shares. In contrast, the heterogeneity in the elasticities estimated by the Mixed
Logit may additionally stem from the heterogeneity in product characteristics as well. We
next explore the relationship between the sales and the estimated own-price elasticities
across products under the Mixed Logit and the Kimball models. The left panel of Figure
4 shows that this relationship is similar between the Mixed Logit specification and the
Kimball specification, when estimated under both identification strategies (DP and IV).
This result confirms that the Kimball specification can indeed account for the a similar
relationship between sales and own-price elasticity as that uncovered by the Mixed Logit
specification, and that the DP approach can identify this pattern without the use of any
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Figure 4: Elasticity Heterogeneity in Kimball and Mixed Logit

Note: The left panel plots a binscatter representation of the relationship between expenditure share and the estimated own-price
elasticitiess. Products with less than 5000 units sold in a year are excluded. We consider the set of elasticities estimated from: i) the
Mixed Logit model (estimated with IV); ii) the Finite-Finite Kimball model using cost shocks (RER) as instruments (Kimball IV); iii)
the Finite-Finite Kimball model using the DP approach (Kimball DP). We also report the CES price coefficient estimated using IV
and DP. The shaded green area represents the confidence bands of the distribution of Mixed Logit elasticities. The right panel shows
the distribution of own-price elasticities of all Kimball specifications (Finite-Finite, Finite-Infinite and Klenow-Willis) estimated using
both the DP and IV instruments. The distribution of Mixed Logit elasticities is also reported. Values are truncated at 20.

additional information other than prices and market shares. Figure E.5 in Appendix E.7
shows that, as per the own-price elasticities, the matrix of cross-price elasticities is similar
between the Mixed Logit specification and the Kimball specification.

The right panel of Figure 4 shows that the entire distribution of onw-price elastici-
ties estimated by the Mixed Logit model is similar to those estimated under the different
Kimball specifications and using the two different identification strategies. This result, in
addition to the evidence on the similarity of the interquartile range values reported in Ta-
ble 3, confirms that the heterogeneity in the price elasticities estimated under the Kimball
specification bears a close resemblance to that under the Mixed Logit specification.47

Lastly, we show that the Kimball models resemble the Mixed Logit specifications be-
cause market shares carry a substantial amount of information on product characteristics.
Figure E.4 in Appendix E.7 shows that there is a strong correlation between market shares
and the first two principal components obtained from a singular value decomposition on
the set of product characteristics. This explains how the Kimball models generates suffi-
cient heterogeneity in elasticities to resemble a much richer specification as Mixed Logit
by using information on market shares only.48

47See also Figure E.3 in Appendix E.7 for additional comparisons across Kimball specifications and iden-
tification strategies. We show that the distribution of elasticities, estimated using both the DP and the IV
approaches, is robust to the choice of different families of the Kimball functions (Finite-Finite, Finite-Infinite
and Infinite-Infinite).

48Table E.5 and Figure E.6 in Appendix E.7 show that the correlation between market shares and the
principal components is stronger when we consider more homogeneous subsamples, such as products of
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Inferred Quality and Product Characteristics Using detailed data on the US automo-
bile market allows us to examine whether our approach retrieves meaningful measures of
quality. Appendix E.6 examines this question by quantifying the correlation between our
inferred measures of quality and the product characteristics valued by consumers avail-
able in our dataset, which is not feasible using standard customs data. In both CES and
Kimball cases, we find find a strong correlation between the estimated values of qual-
ity φit and product characteristics such as horsepower, size, or whether a car is an SUV,
truck, or a van. Importantly, however, the CES demand system attributes a much larger
quality value to these characteristics compared to the Kimball demand. As we will see in
Section 4.4 below, these differences translate into differences between the two models in
the predicted change in the aggregate price index for the entire market.

Marginal Costs, Markups, and Quality If we assume that the market structure is char-
acterized by monopolistic competition, the markup charged for each vehicle-year is given
by µit =

1
σit−1 , where σit is the estimated own-price elasticity for vehicle i at time t. Given

this measure of markups, we infer the marginal cost of each vehicle to be mcit = pit
1+µit

.
The right panel of Figure E.7 in Appendix E.7 shows that there is a strong positive rela-
tionship between a proxy of input cost, the weight of the vehicle multiplied by the price
of steel, and our measure of inferred marginal cost, supporting the relevance of the latter.
Figure E.7 shows that higher quality models have lower elasticities of demand and, thus,
higher markups. Figure E.8 displays a positive relationship between inferred quality and
the cost of production, in line with the findings of the prior literature on product quality
(e.g., Verhoogen, 2008).49

4.4 The Price Index of the US Auto Market

We construct the price index for the entire US auto market following Propositions 3 and
A.1, quantifying the contribution of changes in unit price, quality, and the set of available
models for consumers. Quality is normalized such that the average quality change in the
set of continuing models that are not redesigned between each two consecutive years is
zero (Grieco et al., 2021). As we explain in Appendix E.5, constructing a price index for
the auto industry based on the Mixed Logit specification is quasi-linearity of this demand

the same style (i.e. car, SUV, truck, and van).
49Consistent with this evidence, Figure E.9 in Appendix E.7 shows that our measure of marginal costs is

strongly correlated with the product characteristics consumers value (e.g. horsepower, footprint and miles-
per-gallon). Moreover, these results are also consistent with Atkin et al. (2015), who show direct evidence
for the relationship between markups and costs.
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Figure 5: The Price Index for the US Auto Market
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Note: The left panel plots the cumulative change in the price index for the auto market and its decomposition into the price, quality,
and variety components for the Kimball specification. The solid line represents the price index including all three components. The
dashed and dotted lines represent the price and quality components together and the price component only, respectively. We use the
estimates from the Finite-Finite-Limit (FFL) Kimball specification, estimated using the DP approach. The dotted line represents the
PCE index from BEA.
The right panel compares the cumulative change in the price index Kimball price index (black) to the CES (blue line), Mixed CES
(orange lines), and Mixed Logit (green line) specifications. CES is also estimated using the DP approach. The price index for both the
Kimball and the CES specifications is constructed using Proposition A.4. As reference, we report the price index for the Mixed CES
case, constructed using the approximation in Proposition A.4, and the exact price index for the Mixed Logit specification (estimated
using IV). In all cases, the measure of inferred quality is normalized such that the average change in quality of the set of continuing
models that are not redesigned is zero.

system between automobile demand, which constitutes a very small share of the total
consumer expenditure, and the rest of consumer expenditure. For this reason, Appendix
E.5 sets up an alternative Mixed CES demand specification, which is equally as rich in
terms of the patterns of cross-product substitution elasticities within the auto industry,
but does not suffer from this limitation. We compare the dynamics of the price index
under the Kimball and CES specifications to the Mixed Logit and Mixed CES price indices.

In the left panel of Figure 5 we plot the Kimball price index for the US auto market over
the 1980-2018 period, highlighting the role of the price, quality, and variety channels. The
aggregate price index increases by around 1.7% annually, relative to an annual increase in
PCE of 2.9% over this period. Over the same period of time, unadjusted unit prices in the
auto market increase by 4.30% annually. Quality improvement contributes substantially
to attenuating the increase in the aggregate price index, accounting for an approximately
2% average annual decline. Figure 5 shows that the contribution of the availability of new
models is marginal compared to the quality channel, accounting for a 0.6% annual drop
in the aggregate price index.50

Table 4 also compares the price index for Kimball to the price index for the CES. The
aggregate price index in the CES case decreases by 2.4% annually because the contribu-
tion of quality improvements is largely overestimated (6% in the CES case compared to

50Grieco et al. (2021) also attributes the bulk of the increase in consumer surplus in the auto industry to
quality improvements, while a marginal role is played by the entry of new varieties.
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Table 4: Price Index for the US Auto Market

Total Decomposition

Price Quality Variety

CES Kimball Mixed CES Mixed Logit Kimball CES Kimball CES
Cumulative Log Change (%) -91.76 65.31 74.35 8.44 163.26 -74.38 -226.36 -23.57 -28.66
Average Annual Change (%) -2.41 1.72 1.96 0.22 4.30 -1.96 -5.96 -0.62 -0.75

Note: The Table reports the cumulative and the average annual change in the price indices for the auto market over the period
1980-2018 and its decomposition into the price, quality and variety channels. Quality is normalized such that the average change in
quality of the set of continuing models that are not redesigned is zero. The price index is computed for both the Kimball and the CES
specifications, estimated using the DP approach, constructed using Proposition A.4 and its decomposition. As reference, we report the
price index for the Mixed CES case, constructed using the approximation in Proposition A.4, and the exact price index for the Mixed
Logit specification (estimated using IV).

2% in the Kimball case). On the contrary, the Kimball aggregate price index is closer to the
aggregate price indices for the variable elasticity models (1.7% in the Kimball case com-
pared to 1.9% in the Mixed CES case and 0.2% in the Mixed Logit case), confirming that
the distribution of elasticities is similar across these two specifications. We conclude that,
despite its parsimony, the Kimball demand system captures the key sources of hetero-
geneity included a model with a rich pattern of cross-product elasticities of substitution
such as Mixed CES or Mixed Logit.51

5 Conclusion

In this paper, we examined the role of quality improvements in shaping the variations in
the price of US imports over the 1989-2018 period. We implemented a novel methodol-
ogy to infer quality change as variations in residual demand in a flexible demand system
using only data on prices and market shares. We presented approximate decompositions
of the changes in the relative price of imports into the contribtuions of changes in prices,
quality, and product variety. Moreover, we independently validated our approach in the
context of the US auto market in which additional information on product chacteristics is
available. Our baseline results suggest that, over the period from 1989 to 2018, quality im-
provements are responsible for an average 0.7 percentage points fall in import prices. By
ignoring the heterogeneity in price elasticities, estimates based on CES demand provide a
biased estimate of these gains. Applying our novel method to other specifications of de-
mand, as well as to firm-level data to include pro-competitive effects and their interaction
with quality, are promising venues for future research.

51We can use our estimation results to explore the evolution of markups and marginal cost in the US
auto market. Figure E.10 in Appendix E.7 shows that marginal cost (markups) are increasing (decreasing)
over the period 1980-2018, in line with previous work on this industry, Grieco et al. (2021).

Page 39



References

Ackerberg, Daniel A, “Timing Assumptions and Efficiency: Empirical Evidence in a Pro-
duction Function Context,” 2016. 16

Amiti, Mary and Sebastian Heise, “US market concentration and import competition,”
2021. 24, A43, A44

, Mi Dai, Robert C Feenstra, and John Romalis, “How did China’s WTO entry affect
U.S. prices?,” Journal of International Economics, 2020, 126 (71973013), 103339. 31

, Oleg Itskhoki, and Jozef Konings, “International shocks, variable markups, and do-
mestic prices,” The Review of Economic Studies, 2019, 86 (6), 2356–2402. 6

Atkin, David, Azam Chaudhry, Shamyla Chaudry, Amit K. Khandelwal, and Eric Ver-
hoogen, “Markup and Cost Dispersion across Firms: Direct Evidence from Producer
Surveys in Pakistan,” American Economic Review: Papers & Proceedings, 2015, 105 (5),
537–544. 37

Baldwin, Richard and James Harrigan, “Zeros, quality, and space: Trade theory and
trade evidence,” American Economic Journal: Microeconomics, 2011, 3 (May), 60–88. 4

Baqaee, David and Ariel Burstein, “Welfare and Output with Income Effects and Taste
Shocks,” NBER Working Paper, 2022, (1947611), No. 28754. 5, 20

Baqaee, David Rezza and Emmanuel Farhi, “Productivity and misallocation in general
equilibrium,” The Quarterly Journal of Economics, 2020, 135 (1), 105–163. 6

Becker, Randy A, Wayne B Gray, and Jordan Marvakov, “NBER-CES Manufacturing
Industry Database (1958-2018, version 2021a),” 2021. 24, A44

Berlingieri, Giuseppe, Filippo Boeri, Danial Lashkari, and Jonathan Vogel, “Capital-
skill complementarity in firms and in the aggregate economy,” Unpublished manuscript,
Univ. Calif., Los Angeles, 2022. 3

, Holger Breinlich, and Swati Dhingra, “The impact of trade agreements on consumer
welfareâEvidence from the EU common external trade policy,” Journal of the European
Economic Association, 2018, 16 (6), 1881–1928. 4

Berry, Steven, James Levinsohn, and Ariel Pakes, “Automobile prices in market equi-
librium,” Econometrica: Journal of the Econometric Society, 1995, pp. 841–890. 4, 5, 31, 32,
33

Page 40



Berry, Steven T, “Estimating Discrete-Choice Models of Product Differentiation Au-
thors,” The RAND Journal of Economics, 1994, 25 (2), 242–262. 4, 10, 31, 32, 33

, Amit Gandhi, and Philip A Haile, “Connected Substitutes and Invertibility of De-
mand,” Econometrica, 2013, 81 (5), 2087–2111. 8, 9, 13, 18, 19, A3, A9, A24, A26

Boskin, Michael J., Ellen R. Dulberger, Robert J. Gordon, Zvi Griliches, and Dale W.
Jorgenson, “Consumer Prices, the Consumer Price Index, and the Cost of Living,” Jour-
nal of Economic Perspectives, 1998, 12 (1), 3–26. 2

Brandt, Loren, Johannes Van Biesebroeck, Luhang Wang, and Yifan Zhang, “WTO ac-
cession and performance of Chinese manufacturing firms,” American Economic Review,
2017, 107 (9), 2784–2820. 31

Broda, Christian and David E Weinstein, “Globalization and the Gains from Variety,”
The Quarterly journal of economics, 2006, 121 (2), 541–585. 2, 4, 23, 25, 26, A1, A46, A47,
A48, A49

Caliendo, Lorenzo, Giordano Mion, Luca David Opromolla, and Esteban Rossi-
Hansberg, “Productivity and organization in portuguese firms,” Journal of Political
Economy, 2020, 128 (11), 4211–4257. 3

Comite, Francesco Di, Jacques-François Thisse, and Hylke Vandenbussche, “Verti-
zontal differentiation in export markets,” Journal of International Economics, 2014, 93 (1),
50–66. 5

Crozet, Matthieu, Keith Head, and Thierry Mayer, “Quality sorting and trade: Firm-
level evidence for French wine,” The Review of Economic Studies, 2012, 79 (2), 609–644.
5

Diewert, W Erwin and Catherine J Morrison, “Adjusting output and productivity in-
dexes for changes in the terms of trade,” The Economic Journal, 1986, 96 (383), 659–679.
21, A10

Diewert, Walter E, “The economic theory of index numbers: a survey,” in Walter E Diew-
ert and Alice O Nakamura, eds., Essays in Index Number Theory, Emerald Group Pub-
lishing Ltd, 1993, chapter 7, pp. 163–208. 8

Dingel, Jonathan I, “The determinants of quality specialization,” The Review of Economic
Studies, 2017, 84 (4), 1551–1582. 5

Page 41



Dridi, Jemma and Kimberly Zieschang, “Export and import price indices,” IMF Staff
Papers, 2004, 51 (1), 157–194. A10

Eaton, Jonathan and Ana C Fieler, “The Margins of Trade,” 2022. 5

Edmond, Chris, Virgiliu Midrigan, and Daniel Yi Xu, “Competition, markups, and the
gains from international trade,” American Economic Review, 2015, 105 (10), 3183–3221. 6

, , and , “How costly are markups?,” Journal of Political Economy, 2023, 131 (7),
1619–1675. 3

Fajgelbaum, Pablo, Gene M Grossman, and Elhanan Helpman, “Income distribution,
product quality, and international trade,” Journal of political Economy, 2011, 119 (4), 721–
765. 4

Fan, Haichao, Yao Amber Li, and Stephen R Yeaple, “Trade liberalization, quality, and
export prices,” Review of Economics and Statistics, 2015, 97 (5), 1033–1051. 31

Feenstra, Robert C, “New product varieties and the measurement of international
prices,” The American Economic Review, 1994, pp. 157–177. 2, 3, 4, 17, 18, 19, 25, A0,
A5, A16, A17, A18, A47

, Product variety and the gains from international trade, Cambridge, MA: MIT Press, 2010.
A17

and David E Weinstein, “Globalization, markups, and US welfare,” Journal of Political
Economy, 2017, 125 (4), 1040–1074. 5, 6

and John Romalis, “International prices and endogenous quality,” The Quarterly Jour-
nal of Economics, 2014, 129 (2), 477–527. 5

, , and Peter K Schott, “US imports, exports, and tariff data, 1989-2001,” 2002. A46

Flam, Harry and Elhanan Helpman, “Vertical product differentiation and advertising,”
American Economic Review, 1987, 77 (5), 810–822. 4

Foley, Conor, “Flexible Entry / Exit Adjustment for Price Indices,” 2021. 3

Gábor-Tóth, Eniko and Philip Vermeulen, “The Relative Importance of Taste Shocks
and Price Movements in the Variation of Cost-of-Living: Evidence From Scanner Data,”
2018. 5

Page 42



Goldberg, Pinelopi Koujianou and Frank Verboven, “The evolution of price dispersion
in the European car market,” The Review of Economic Studies, 2001, 68 (4), 811–848. 32

Gordon, Robert J and Zvi Griliches, “Quality change and new products,” The American
Economic Review, 1997, 87 (2), 84–88. 2

Grennan, Matthew, “Price discrimination and bargaining: Empirical evidence from med-
ical devices,” American Economic Review, 2013, 103 (1), 145–177. 3

Grieco, Paul LE, Charles Murry, and Ali Yurukoglu, “The evolution of market power in
the US auto industry,” Technical Report, National Bureau of Economic Research 2021.
6, 31, 32, 34, 37, 38, 39, A66, A69

Grossman, Gene M, Elhanan Helpman, and Hugo Lhuillier, “Supply chain resilience:
Should policy promote international diversification or reshoring?,” Journal of Political
Economy, 2023, 131 (12), 3462–3496. 3

Hallak, Juan Carlos, “Product quality and the direction of trade,” Journal of International
Economics, 2006, 68 (1), 238–265. 4

and Peter K Schott, “Estimating cross-country differences in product quality,” The
Quarterly journal of economics, 2011, 126 (1), 417–474. 2, 5

Hanoch, Giora, “CRESH Production Functions,” Econometrica, 1971, 39, 695–712. 3

Head, Keith and Thierry Mayer, “Poor Substitutes? Counterfactual Methods in IO and
Trade Compared,” 2021. 5

Hsieh, Chang-Tai and Ralph Ossa, “A global view of productivity growth in China,”
Journal of international Economics, 2016, 102, 209–224. 30, 31

, Nicholas Li, Ralph Ossa, and Mu-Jeung Yang, “Accounting for the new gains from
trade liberalization,” Journal of International Economics, 2020, 127, 103370. 5

Hummels, David and Alexandre Skiba, “Shipping the good apples out? An empirical
confirmation of the Alchian-Allen conjecture,” Journal of Political Economy, 2004, 112 (6),
1384–1402. 4

and Peter J Klenow, “The variety and quality of a nation’s exports,” American economic
review, 2005, 95 (3), 704–723. 5

Jaravel, Xavier and Danial Lashkari, “Nonparametric Measurement of Long-Run
Growth in Consumer Welfare,” 2021. 5

Page 43



and , “Measuring Growth in Consumer Welfare with Income-Dependent Prefer-
ences: Nonparametric Methods and Estimates for the United States,” The Quarterly
Journal of Economics, 2024, 139 (1), 477–532. 20, A6, A7, A8

Kasahara, Hiroyuki and Yoichi Sugita, “Nonparametric Identification of Production
Function, Total Factor Productivity, and Markup from Revenue Data,” 2021. 6

Kehoe, Timothy J and Kim J Ruhl, “Are shocks to the terms of trade shocks to produc-
tivity?,” Review of Economic Dynamics, 2008, 11 (4), 804–819. A11

Khandelwal, Amit, “The long and short (of) quality ladders,” The Review of Economic
Studies, 2010, 77 (4), 1450–1476. 2, 5

Kimball, Miles S, “The quantitative analytics of the basic neomonetarist model,” 1995. 3,
22

, “The quantitative analytics of the basic neomonetarist model,” 1995. 12

Klenow, Peter J and Jonathan L Willis, “Real Rigidities and Nominal Price Changes,”
2006. 12, 23, A16

Kohli, Ulrich, “Real GDP, real domestic income, and terms-of-trade changes,” Journal of
International Economics, 2004, 62 (1), 83–106. A10, A11

Kugler, Maurice and Eric Verhoogen, “Prices, plant size, and product quality,” Review of
Economic Studies, 2012, 79 (1), 307–339. 5

Leamer, Edward E, “Is it a Demand Curve, Or is It A Supply Curve? Partial Identification
through Inequality Constraints,” Review of Economics and Statistics, 1981, 63 (3), 319–327.
17, A16, A17, A18

Lee, Robin S, “Vertical integration and exclusivity in platform and two-sided markets,”
American Economic Review, 2013, 103 (7), 2960–3000. 3

Linder, Staffan B, An Essay on Trade and Transformation, Uppsala: Almqvist & Wiksells,
1961. 4

Manova, Kalina and Zhiwei Zhang, “Export prices across firms and destinations,” Quar-
terly Journal of Economics, 2012, 127 (1), 379–436. 5

Martin, Julien and Isabelle Mejean, “Low-wage country competition and the quality
content of high-wage country exports,” Journal of International Economics, 2014, 93 (1),
140–152. 5

Page 44



Matsuyama, Kiminori, “Non-CES aggregators: a guided tour,” 2022. 3, 11

and Philip Ushchev, “Beyond CES: Three Alternative Classes of Flexible Homothetic
Demand Systems,” 2017. 3, 11

and , “Selection and Sorting of Heterogeneous Firms through Competitive Pres-
sures,” 2022. 6

McFadden, Daniel, “Conditional logit analysis of qualitative choice behavior,” in
P Zarembka, ed., Frontiers in Econometrics, Academic Press, 1974, pp. 105—-142. 10

Oulton, Nicholas, “The effect of changes in the terms of trade on GDP and welfare: A
Divisia approach to the System of National Accounts,” The Manchester School, 2023.
A11

Pierce, Justin R and Peter K Schott, “A concordance between ten-digit US Harmonized
System Codes and SIC/NAICS product classes and industries,” Journal of Economic and
Social Measurement, 2012, 37 (1-2), 61–96. 24, A43, A44

Rauch, James E, “Networks versus markets in international trade,” Journal of international
Economics, 1999, 48 (1), 7–35. 26, A47, A48, A49

Redding, Stephen J and David E Weinstein, “Measuring aggregate price indices with
taste shocks: Theory and evidence for ces preferences,” The Quarterly Journal of Eco-
nomics, 2020, 135 (1), 503–560. 2, 3, 4, 5, 7, 9, 19

Redding, Stephen J. and David E. Weinstein, “Measuring Aggregate Price Indices with
Taste Shocks: Theory and Evidence for CES Preferences,” Quarterly Journal of Economics,
2020, 135 (1), 503–560. A4

Redding, Stephen J and David E Weinstein, “Accounting for trade patterns,” Journal of
International Economics, 2024, 150, 103910. 5, 31

Reinsdorf, Marshall B, “Terms of trade effects: Theory and measurement,” Review of
Income and Wealth, 2010, 56, S177–S205. A11

Schott, Peter K, “Across-product versus within-product specialization in international
trade,” The Quarterly Journal of Economics, 2004, 119 (2), 647–678. 5

, “The relative sophistication of Chinese exports,” Economic policy, 2008, 23 (53), 6–49.
31, A43

Page 45



Shu, P and C Steinwender, “The impact of trade liberalization on firm productivity and
innovation. Innovation Policy and the Economy, Vol. 19,” 2019. 31

Soderbery, Anson, “Estimating import supply and demand elasticities: Analysis and im-
plications,” Journal of International Economics, 2015, 96 (1), 1–17. 4

, “Estimating import supply and demand elasticities: Analysis and implications,” Jour-
nal of International Economics, 2015, 96 (1), 1–17. A17, A47, A48

Sweeting, Andrew, “Dynamic Product Positioning in Differentiated Product Markets:
The Effect of Fees for Musical Performance Rights on the Commercial Radio Industry,”
Econometrica, 2013, 81 (5), 1763–1803. 3

Triplett, Jack, “Handbook on hedonic indexes and quality adjustments in price indexes:
Special application to information technology products,” 2004. 2

Ueda, Kozo, Kota Watanabe, and Tsutomu Watanabe, “Product Turnover and the Cost-
of-Living Index: Quality versus Fashion Effects,” American Economic Journal: Macroeco-
nomics, 2019, 11 (2), 310–347. 5

U.S. Bureau of Labor Statistics, Handbook of Methods: Producer Price Index U.S. Depart-
ment of Labor 2024. https://www.bls.gov/ppi/methodology.htm. 3

Verhoogen, Eric A, “Trade, quality upgrading, and wage inequality in the Mexican man-
ufacturing sector,” The Quarterly Journal of Economics, 2008, 123 (2), 489–530. 4, 5, 37

Wang, Olivier and Iván Werning, “Dynamic oligopoly and price stickiness,” Technical
Report, National Bureau of Economic Research 2020. 6

Page 46

https://www.bls.gov/ppi/methodology.htm


Appendix to “Aggregation and the Estimation of Quality
Change: Application to the Case of the US Price Index”

Marco Errico, Bank of Italy
Danial Lashkari, Federal Reserve Bank of New York

September 2024

Contents

A Additional Theoretical Results A2
A.1 Approximate Divisia Index with Income Dependence and Product Entry/Exit A2

A.1.1 Construction of the Smooth Paths of Quality-Adjusted Prices . . . . A2
A.1.2 Exact Characterization of the Price Index Change Along the Path . . A3
A.1.3 Approximate Change in the Price Index and Quality . . . . . . . . . A5

A.2 From the Divisia to the Cost-of-Living Indices with Income Dependence . . A6
A.3 Characterization of the Price Index Across Product Categories . . . . . . . . A8

A.3.1 General Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A8
A.3.2 Separable Demand Structure . . . . . . . . . . . . . . . . . . . . . . . A8

A.4 Production-Based Price Import Index . . . . . . . . . . . . . . . . . . . . . . A10
A.4.1 GDP, Welfare, and Import-Export Price Indices . . . . . . . . . . . . . A10
A.4.2 Intermediate Import Demand . . . . . . . . . . . . . . . . . . . . . . . A13

A.5 More Details on Homothetic with Aggregator Family . . . . . . . . . . . . . A14
A.5.1 Local Demand Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . A14
A.5.2 Approximate Price Index with Product Entry/Exit . . . . . . . . . . A14
A.5.3 Specifications for the Kimball Aggregator . . . . . . . . . . . . . . . . A16

A.6 Comparison of the Dynamic Panel Identification with Feenstra (1994) . . . . A16

B Proofs and Derivations A18
B.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A18
B.2 Derivations for the Kimball Aggregators . . . . . . . . . . . . . . . . . . . . . A38

B.2.1 Derivations for Kimball Specifications . . . . . . . . . . . . . . . . . . A38
B.2.2 Inverting Kimball Demand . . . . . . . . . . . . . . . . . . . . . . . . A40



C Simulation Exercise A41
C.1 Data Generating Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A41
C.2 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A42

D Details on the Application to the Price Index of US Imports A42
D.1 US Data Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A42
D.2 Further Examination of CES Estimates and Comparison to Original Broda

and Weinstein (2006) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A46
D.3 Further Results on Price and Quality Decomposition . . . . . . . . . . . . . . A51

D.3.1 Bias in Inferred Price Index: CES vs. Kimball . . . . . . . . . . . . . . A51
D.3.2 Quality Decomposition across Sectors . . . . . . . . . . . . . . . . . . A52
D.3.3 Quality Decomposition across Exporters . . . . . . . . . . . . . . . . A53
D.3.4 Gains from Variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A54

D.4 Additional Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . A55

E Details on the Validation using the US Auto Data A60
E.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A60
E.2 Testing the Identification Assumption . . . . . . . . . . . . . . . . . . . . . . A60
E.3 Heterogeneity Bias in Elasticity Estimation . . . . . . . . . . . . . . . . . . . A64

E.3.1 A Theory of Heterogeneity Bias . . . . . . . . . . . . . . . . . . . . . A64
E.3.2 Evidence in the Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . A65

E.4 Details on the Mixed Logit Specification . . . . . . . . . . . . . . . . . . . . . A65
E.4.1 Mixed Logit Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . A65
E.4.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A66
E.4.3 Mixed Logit Price Index for the Auto Industry . . . . . . . . . . . . . A66

E.5 Details on the Mixed CES Specification . . . . . . . . . . . . . . . . . . . . . . A68
E.5.1 Mixed CES Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . A68
E.5.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A69
E.5.3 Mixed CES Price Index for the Auto Industry . . . . . . . . . . . . . . A70

E.6 Inferred Quality and Product Characteristics . . . . . . . . . . . . . . . . . . A71
E.7 Additional Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . A73

Page A1



Figure A.1: Construction of the smooth paths of quality-adjusted prices

Note: Schematic depication of the paths of quality-adjusted prices connecting the observations between two time periods t − 1 and t. Products A
and B belong to the continuing set V∗

t and thus have nonzero consumption shares in both terminal periods. Product C exists in period t, in the
sense that consumers cease to spend on it even though it remains available. In this case, the path converges to the quality-adjusted choke price pφ

C
at time t. Product D enters in period t, in the sense that it becomes available in this period. In this case, the path converges to infinity from below
at time t − 1.

A Additional Theoretical Results

A.1 Approximate Divisia Index with Income Dependence and Product

Entry/Exit

A.1.1 Construction of the Smooth Paths of Quality-Adjusted Prices

Figure A.1 provides a schematic view of the construction of the smooth paths of prices
and expenditure shares between periods t − 1 and t. At time t, consumer(s) have nonzero
expenditure on the purchased set It of products (so that sit = 0, i /∈ It), which may poten-
tially be different from the set of available products It. The constructed paths are the same
as that in Section 2.2 for the continuing set I∗t ≡ It−1 ∩ It of products common between the
purchased sets in the two periods: we simply consider any smooth interpolating paths
of quality-adjusted prices pφ

t−1 to p
φ
t and total expenditure yt−1 to yt that connect the two

terminal periods. For the entering/exiting set I†
t ≡ (It−1 ∪ It)\I∗t of products, we assume

infinite prices if the product is unavailable, and a choke quality-adjusted price pφ
i (above

which the demand falls to zero) if the product is available but is not purchased. For in-
stance, if a product i is unavailable in the end (i ∈ It−1 and i /∈ It), its price satisfies
limτ↓t−1 piτ = ∞, and if it is unavailable in the beginning (i /∈ It−1 and i ∈ It), it satis-
fies limτ↑t piτ = ∞. Note that the ultimate approximation is independent of the paths of
prices considered.
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Along the constructed paths, we can apply the definition of the demand system to
define the corresponding paths of expenditure shares siτ, cross-product substitution elas-
ticities σij,τ, and the income elasticity ηi,τ. We also define the total expenditure share of
the continuing set as Λ∗

τ ≡ ∑i∈I∗t
siτ, and the expenditure shares within the continuing set

as s∗iτ ≡ siτ/Λ∗
τ for i ∈ I∗t . Similarly, we define the total expenditure share of the set of

entering/exiting products as Λ†
τ ≡ ∑i∈I†

t
siτ = 1 − Λ∗

τ, and the expenditure shares within
this set s†

jτ ≡ sjτ/Λ†
τ for j ∈ I†

t , denoting the distribution of expenditures within the set of
entering/exiting products.

Lemma A.1. Along the paths defined above, the vector of change in log expenditure shares and
the vector of change in log quality-adjusted prices satisfy

d log siτ = −∑
j∈I

Ξij,τ
(
d log pjτ − dφjτ − d log Pτ

)
+ (ηiτ − 1) (d log yτ − d log Pτ) , (A.1)

where we have defined the instantaneous price index as

d log Pτ = ∑
i

siτ (d log piτ − dφiτ) , (A.2)

and where the matrix mapping prices to expenditure shares satisfies Ξτ ≡ Ψτ

(
Σd

τ − I
)

with Ψτ

and Σd
τ given as in Proposition 1.

Proof. See Appendix B.1 on page A23.

A.1.2 Exact Characterization of the Price Index Change Along the Path

The following lemma characterizes the instantaneous change in the log price index any-
where along the path constructed in the previous section.

Lemma A.2. Assume that the demand system is income invariant (homothetic) and satisfies the
connected substitute property of Berry et al. (2013). Consider a path of quality-adjusted vector of
prices p

φ
t and the corresponding expenditure shares constructed following Section A.1.1. Then,

anywhere along such a path, the matrix Ψτ

(
Σd

τ − I
)

mapping relative prices to relative expendi-

ture shares, with elements given by Equation (4), is invertible. Letting Ψ−1
ij,τ denote the elements

of the inverse matrix, we can alternatively write the change in the log price index

d log Pτ = ∑
i

ϖitd log piτ + ∑
i

∑
j∈I∗t

ϖit
1

σii,τ−1 Ψ−1
ij,τ d log s∗jτ
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+

∑
i

∑
j∈I∗t

ϖit
σii,τ−1 Ψ−1

ij,τ

 d log Λ∗
τ + ∑

i
∑

j∈It\I∗t

ϖit
σii,τ−1 Ψ−1

ij,τ d log sjτ, (A.3)

where (ϖit)i are the weights corresponding to the base set Ot between periods t − 1 and t. More-
over, the instantaneous change in the price index can be decomposed to the the contribution of unit
prices and quality change in the set of continuing products, and product entry and exit d log Xτ

according to

d log Pτ = ∑
i

s∗iτd log piτ − ∑
i

s∗iτdφiτ + d log Xτ, (A.4)

where the latter two terms satisfy

∑
i

s∗iτdφiτ = ∑
i
(s∗iτ − ϖit) d log piτ + ∑

j∈I∗t
∑

i
(s∗iτ − ϖit)

1
σii,τ−1 Ψ−1

ij,τ

(
d log s∗jτ + d log Λ∗

τ

)
+ ∑

j∈I†
t

∑
i
(s∗iτ − ϖit)

1
σii,τ−1 Ψ−1

ij,τ d log sjτ, (A.5)

d log Xτ =

(
∑

i,j∈I∗t

s∗iτ
1

σii,τ−1 Ψ−1
ij,τ

)
d log Λ∗

τ + ∑
i,j∈I∗t

s∗iτ
1

σii,τ−1 Ψ−1
ij,τd log s∗jτ + ∑

i
∑
j∈I†

t

s∗iτ
1

σii,τ−1 Ψ−1
ij,τ d log sjτ.

(A.6)

Proof. See Appendix B.1 on page A24.

If we again consider CES preferences with elasticity parameter σ, and if we assume
that Ot ⊂ I∗t , the expression in Equation A.3 simplifies to

d log Pτ = ∑
i

ϖitd log piτ +
1

σ − 1 ∑
i

ϖitd log s∗iτ +
1

σ − 1
d log Λ∗

τ.

In this case, we can integrate the expression between times t − 1 and t to reach Equation
(23).

Equation (A.4) expresses the inflation in the aggregate price index at any point along
the path between periods t − 1 and t as the sum of a number of different contributions.
The first and the second terms are similar to those in Equations (??) and (7). The remaining
terms account for the changes in the sets of products entering or exiting between the two
periods. To unpack these three terms, let us first consider the special case of the CES
demand system. In this case, all cross-product elasticities of substitution are identical
and constant, ηij,τ ≡ σ for all i ̸= j and τ. As a result, we find σiτ = σ∗

τ = σs and the
covariance terms in Equation (A.6) vanish, leading to the standard result (e.g., Redding
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and Weinstein, 2020b):

d log Pτ = ∑
i

s∗iτd log piτ − ∑
i

s∗iτdφiτ +
1

σ−1 d log Λ∗
τ. (A.7)

The last term in Equation (A.7) is the Feenstra (1994) CES correction for the contributions
of product entry and exit, given by the product of the CES love-of-variety parameter

1
σ−1 and the change in the expenditure share of common set. If the share of continuing
products in expenditure rises, it signifies that the consumer is switching their expenditure
away from the entering/exiting products, implying a welfare loss captured by the rising
price index.

More generally, Equations (A.4), (A.5), and (A.6) show how the presence of hetero-
geneity in cross-product substitution elasticities modifies the CES case in Equation (A.7).
We will use this result in the derivation of Proposition A.1 below.

Finally, Lemma A.3 below generalizes this result to more general demand systems
featuring potential income dependence (nonhomotheticity).

Lemma A.3. Assume all the conditions in Lemma A.2 but relax the assumption of income invari-
ant demand. Then, the quality-adjusted Divisia index, i.e., expenditure-share weighted mean of
quality-adjusted prices d log Pτ ≡ ∑i siτd log pφ

iτ, satisfies

d log Pτ ≡
d log PI I

τ −
(

∑i,j
ϖit

σii,τ−1 Ψ−1
ij,τ
(
ηjτ − 1

))
d log yτ

1 − ∑i,j
ϖit

σii,τ−1 Ψ−1
ij,τ
(
ηjτ − 1

) , (A.8)

where d log PI I
τ is given by the expression for the income-invariant case provided in Equation

(A.4).

Proof. See Appendix B.1 on page A26.

A.1.3 Approximate Change in the Price Index and Quality

Proposition 3 provides an expression that approximately characterizes the change in the
price index between each two consecutive periods in terms of the expenditure shares and
prices.

Proposition A.1. (Approximate Decomposition of the Price Index for Income-Invariant Prefer-
ences with Product Entry and Exit) Assume that the conditions in Proposition 3 hold and define
δ accordingly. Up to the second order of approximation in δ, the change in the log price in-
dex between periods t − 1 and t can be decomposed as ∆ log Pt = ∑i s∗it∆ log pit − ∆ log Φt +
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∆ log Xt + O
(
δ3), where the first term accounts for the contribution of unit prices in the set of

continuing products, the second term ∆ log Φt for quality change, and the last term ∆ log Xt for
the contribution of product entry and exit. The latter two terms are given by

∆ log Φt = ∑
i

s∗it∆ log pit − ∑
i

ϖit∆ log pit + ∑
j∈I∗t

(
∑

i
s∗itΨ

−1
ij,t − ∑

i
ϖitΨ−1

ij,t

)(
∆ log s∗jt + ∆ log Λ∗

t

)
+ ∑

i
∑

j∈It\I∗t

(sit − ϖit)Ψ−1
ij,t − ∑

i
∑

j∈It−1\I∗t

(sit−1 − ϖit)Ψ−1
ij,t , (A.9)

∆ log Xt = ∑
j∈I∗t

∑
i

s∗itΨ
−1
ij,t

(
∆ log s∗jt + ∆ log Λ∗

t

)
+ ∑

j∈It\I∗t

sitΨ−1
ij,t − ∑

j∈It−1\I∗t

sit−1Ψ−1
ij,t−1. (A.10)

Proof. See Appendix B.1 on page A26.

The proof of the proposition shows that we can approximate the change in the quality
of a continuting product i ∈ V∗

t as follows

∆φit = ∆ log pit − ∑
i

ϖit∆ log pit + ∑
j∈I∗t

(
1

σii,t−1 Ψ−1
ij,t − ∑

i
ϖit

1
σii,t−1 Ψ−1

ij,t

)(
∆ log s∗jt + ∆ log Λ∗

t

)
+ ∑

j∈It\V∗
t

(
1

σii,t−1 Ψ−1
ij,t − ∑

i
ϖit

1
σii,t−1 Ψ−1

ij,t

)
− ∑

j∈It−1\V∗
t

(
1

σii,t−1 Ψ−1
ij,t−1 − ∑

i
ϖit

1
σii,t−1 Ψ−1

ij,t

)
+ O

(
δ3
)

.

(A.11)

The contribution of unit price and quality change in the set of continuing products are ap-
proximately given by the Törqvist indices of price and quality, respectively. The residual
term is given by Equation (A.10) and accounts for the contribution of product entry and
exit.

A.2 From the Divisia to the Cost-of-Living Indices with Income De-

pendence

Our analysis so far has focused on recovering approximations of the Divisia index that
account for the changes in quality and product entry and exit. As emphasized recently by
Jaravel and Lashkari (2024), when the composition of consumption depends on income
(income-dependence/nonhomotheticity), the Divisia index only provides a local approx-
imation of the cost-of-living index and cannot be chained over time. They show how to
apply corrections to the Divisia index to construct theoretically consistent cost-of-living
indices that can be chained over time.
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We can show that our results here easily generalize to their framework. To see this,
let us follow their approach and define real consumption c and the mapping from real
consumption to expenditure χt (·) given the vector of quality-adjusted prices p

φ
t at time

t and the choice of a base period b for measuring real consumption using the following
two conditions

χb
t (c) ≡ E

(
u;pφ

t
)

, (A.12)

c ≡ E
(
u;pφ

b

)
, (A.13)

expressed in terms of the expenditure function E (u;pφ). As such, we can define a corre-
sponding price index as a function of real consumption

P̃ b
t (c) ≡

E
(
u;pφ

t
)

E
(
u;pφ

b

) , (A.14)

where utility u again satisfies condition (A.13).
With the above definitions, we can generalize Proposition 1 of Jaravel and Lashkari

(2024) to characterize the evolution of the mapping χb
τ (·) along a smooth path of quality-

adjusted prices pφ
τ and total expenditures yτ connecting the two periods t − 1 and t as

∂ log χb
τ (c)

∂τ
= logDφ

τ

(
χb

τ (c)
)

, (A.15)

where we have defined the quality-adjusted Divida function Dφ
τ (·) of total expenditure

y as
logDφ

τ (y) ≡ ∑
i

s̃uc
i
(
y;pφ

τ

)
(d log piτ − dφit) , (A.16)

where the uncompensated (marshallian) expenditure share function s̃i
(
y;pφ

τ

)
may de-

pend on total expenditure y due to income-dependence in preferences. It then follows
that the instantaneous change in the price index is given as a convex combination

∂ log P̃ b
τ (c)

∂τ
=

[
1 −

(
∂ log χb

τ (cτ)

∂ log cτ

)]−1
d log yτ

dτ
+

(
∂ log χb

τ (cτ)

∂ log cτ

)
logDφ

τ (y) ,

of the growth in nominal expenditure d log yτ

dτ and the quality-adjusted Divisa index logDφ
τ (y).

Our results in the paper focus on characterizing the latter, and are sufficient for recovering

the change in the price index in the special case ∂ log χb
τ(cτ)

∂ log cτ
≡ 1, which corresponds either

to the case of income-dependent preferences, or to the knife-edge alternative in which
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the patterns of price inflation are orthogonal to the variations in income elasticity across
products.

To empirically implement the strategy of Jaravel and Lashkari (2024), we need cross-
sectional household-level data. In our main application of the import price index, unfor-
tuantely we do not have access to such data and thus we have followed most of the prior
work in choosing an income-invariant specification of the aggregate import demand.

A.3 Characterization of the Price Index Across Product Categories

A.3.1 General Results

Following the construction in Section 2.4.3, we can decompose the variations in the price
index along the smooth paths of prices and qualities constructed in Section 2.1 between
each two consecutive periods. It is easy to see that the instantaneous change in the price
index can be decomposed into

d log Pτ = ∑
k∈K

sk
τ d log Pk

τ , τ ∈ (t − 1, t) , (A.17)

where sk
τ ≡ ∑i∈Ik siτ is the total share of products in category k, and where we have

defined the instantaneous change in the within-category price index as

d log Pk
τ = ∑

i∈Ik

siτ

sk
τ

(d log piτ − dφit) , τ ∈ (t − 1, t) . (A.18)

Approximate integration of Equation (A.17) allows to write the change in the price index
as in Equation (25).

A.3.2 Separable Demand Structure

Assume that the price index is separable across different product categories Ik defined in
Section 2.4.3, in the sense that we can write the price index as

P (pφ) = P
(

P1
(
pφ,1

)
, · · · , PK

(
pφ,K

))
, (A.19)

for some 1st-degree homogeneous function P (·) that constitutes the upper-level nest, and
for a collection of K lower-level nests Pk (·), defined as a function of the vector of quality-
adjusted prices for products in category k, that is, pφ,k =

(
pφ

i
)

i∈Ik . Applying Definition (1)
to the upper-level price index function P (·) and to the vector of price indices of categories
P ≡

(
Pk) where Pk ≡ P k (pk), we can define the demand function for category k goods
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Qk ≡ ∂P/∂Pk, the corresponding expenditure-share function s̃k ≡ ∂ logP/∂ log Pk, and
cross-category elasticities of substitution σC

kℓ ≡ (1/sℓ)∂ log Qk/∂ log Pℓ. Similarly, ap-
plying the same definitions to the category-level price index function Pk (·), we define
the within-category demand function for good i as q̃k

i ≡ ∂Pk/∂pi, the corresponding
expenditure-share function as s̃k

i ≡ ∂ log Pk/∂ log pi, and within-category cross-category
elasticities of substitution σk

ij ≡ (1/S j)∂ log Qk
i /∂ log pj. Accordingly, we define the cross-

category and within-category/cross-product matrices of substitution elasticities ΣN (K ×
K-dimensional) and Σk (

∣∣Ik
∣∣× ∣∣Ik

∣∣ dimensional), and the corresponding matrices ΨN and
Ψk, following Equation (4), where the expenditure share vectors are category-level shares
and within-category-product-level shares, respectively. We similarly define the sets of
available products Ik

t in period t, and the set of continuing products I∗,k
t between pe-

riods t − 1 and t. Finally, we assume that within each category, there exists a set Ok
t

of products, whose quality on average remains constant from period t − 1 to t. We let
ϖk

t ≡ 1
|Ok

t |
I
{

i ∈ Ok
i
}

denote the corresponding weights.

Using the above definitions, Proposition A.2 below shows that we only need within-
category expenditure shares and cross-product elasticities of substitution to characterize
the change in the category-level price indices.

Proposition A.2. (Approximate Category-Specific Price Index for Separable Homothetic Prefer-
ences with Product Entry and Exit) Assume that the demand system is homothetic, satisfies the
connected substitute property of Berry et al. (2013), the corresponding price index is continuously
differentiable in prices and satisfies the separability condition in Equation (A.19), the elements of
the inverse of the matrix Ψk defined as above are such that Ψk,−1

ij /sj remains everywhere bounded
for all i ̸= j, and that all products within the base set within category k continue from period t − 1
to period t, that is Ok

t ⊂ Ik,∗
t . Then, the change in the category-k log price index between periods

t − 1 and t can be approximated as

∆ log Pk
t = ∑

i
ϖk

it∆ log pit + ∑
i

ϖk
it ∑

j∈Ik,∗
t

Ψk,−1
ij,t ∆ log s∗jτ + ∑

i
ϖk

it ∑
j∈Ik,∗

t

Ψ−1
ij,t ∆ log Λ∗

t

+

∑
i

ϖk
it ∑

j∈Ik
t \Ik,∗

t

Ψk,−1
ij,t − ∑

i
ϖk

it ∑
j∈Ik

t−1\Ik,∗
t

Ψk,−1
ij,t−1

+ O
((

δk
)3
)

,

(A.20)

such that δk ≡ max
{

maxi∈Ok
t
{|∆ log pit|} , maxi∈V∗

t

{∣∣∣∆ log sk,∗
it

∣∣∣} ,
∣∣∣∆ log Λk,∗

t

∣∣∣ , maxi/∈Vk,∗
t

{∣∣∆sk
it

∣∣ 2
3

}}
.
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Proof. See Appendix B.1 on page A27.

A.4 Production-Based Price Import Index

In this section, we provide two sets of results. We first provide a number results on the
roles of import (and export) price indices in measuring real GDP and welfare. Specifi-
cally, we show that a lower estimate for import prices (for instance due to quality adjust-
ment) leads to lower estimates of real GDP growth while also raising our estimates of
real consumption growth. Next, we use the same framework to offer a production-based
derivation for the intermediate product components of the import price index.

A.4.1 GDP, Welfare, and Import-Export Price Indices

Following Diewert and Morrison (1986) (see also Kohli, 2004 and Dridi and Zieschang,
2004), we define the GDP function in terms of the vector of all quantity-adjusted prices
pφ and the vector of utilized factors F as

Rt (p
φ;v) ≡ max

qφ
pφ,D · qφ,D + pφ,X · qφ,X − pφ,M · qφ,M, such that (qφ,F ) ∈ Γt,

(A.21)
where Γt indicates the technologically feasible set of quality-adjusted quantities and fac-
tor utilization, and where the set of all products I = ID ∪ IX ∪ IM is partitioned into
three categories of domestically consumed final products ID with the corresponding vec-
tors of quality-adjusted quantities and prices qφ,D and pφ,D, exported products IX with
the corresponding vectors qφ,X and pφ,X, and imported intermediate products IM with
the corresponding vectors qφ,M and pφ,M. Note that in this definition, the set of import
products correspond to those imported products that are used as inputs in the production
sector of the economy.

We again consider a setting in which we observe data on prices and quantities in each
of the three sets, over a number of discrete time points t ∈ {0, · · · , T − 1}. In addition, we
now also observe vectors of utilized factors vt, and assume that the set of feasible tech-
nologies Γt may also vary over time while remaining unobservable to us. Just like before,
we also construct smooth paths along which the vector of quality-adjusted prices pφ

τ , and
now additionally the vectors of utilized factors vτ and the set of feasible technologies Γτ,
smoothly evolve between each two time periods. Along such paths, we can write the
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growth in the nominal value of GDP as

d log Rτ = Aτ dτ + ∑
j

sj
F,τ d log Fjτ

+ sD
G,τ d log PD

τ + sX
G,τ d log PX

τ − sM
G,τ d log PM

τ , (A.22)

where we have defined the effect of technological progress on GDP as Aτ ≡ ∂ logRτ(pφ;Fτ)
∂τ ,

the share of factor j in income as Sj
F,τ ≡ ∂ logRτ(pφ;Fτ)

∂ log vjτ
=

WjFjτ
Rτ

, the price index for the
category k of products as

d log Pk
τ ≡ ∑

i∈Ik

piτqiτ

p
φ,k
τ · qφ,k

τ

d log piτ, k ∈ {D, X, M} , (A.23)

and the share of the corresponding product category in GDP as sk
G,τ ≡ p

φ,k
τ · qφ,k

τ /Rτ.
We can define the real GDP growth as the component of the nominal GDP growth in
Equation (A.22) that captures the contribution of changes in technology or factors used in
production asA1

d log Gτ ≡ d log Rτ − sD
G,τ d log PD

τ + sX
G,τ d log PX

τ − sM
G,τ d log PM

τ︸ ︷︷ ︸
GDP deflator

. (A.24)

Accordingly, following the same arguments as before, we can approximate the GDP de-
flator according to

∆ log PG,t = sD
G,t ∆ log PD

t + sX
G,t ∆ log PX

t − sM
G,t ∆ log PM

t + O
(

δ3
)

, (A.25)

where we have δ ≡ maxk
{∣∣∆ log Pk

t
∣∣}, where ∆ log Pk

t is the change in the log price index
corresponding to category k. Equation (A.25) shows that a rise in the import price index
lowers the GDP deflator and thus, assuming a fixed growth in nominal GDP, leads to a
rise in the GDP growth. We can use the same approach as that offered in the preceding
sections to approximate the import price index in Equation (A.25).

As shown by Kohli (2004) (see also Kehoe and Ruhl, 2008, Oulton, 2023, and Reins-
dorf, 2010), the notion of real GDP is not a satisfactory concept for the measurement of
aggregate real income. In particular, it leads to counterintuitive results when evaluting

A1It is easy to see that the real GDP function defined in Equation (A.24) corresponds to the value of the
GDP function for a fixed vector of prices pb, that is, Gτ ≡ Rτ (pb;Fτ), when the fixed vector of prices is
evaluated (after taking the partial derivatives with respect to time) at the current value of the vector of
prices as pb = pτ . As such the growth in the GDP function only evaluates the contributions of changes in
technology and factors of production in the value of production, keeping the prices as constant.
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the effect of terms-of-trade shocks on real income. Since real GDP evaluates the new com-
bination of imports and exports under a fixed set of prices, it can fall when the relative
price of imports falls simply due the resulting rise on imports. This is in contrast to real
consumption, which rises under this scenario since rising imports at lower prices bring
a higher value to households. To capture this channel, let us again consider the income-
independent (homothetic) preferences for households following Section 2.1, which im-
plies the following cardinalized measure of welfare

Ut = V (ut) =
Rt
(
p

φ
t ;Ft

)
(1 + Dt)

P
(
p

φ
t
) , (A.26)

where Dt stands for the trade deficit (as a share of GDP), and where P
(
p

φ
t
)

is the con-
sumer price index. In Equation (A.26), we have slightly abused notation by using p

φ
t to

indicate the entire vector of quality-adjusted products, including final and intermediate,
domestic and imported products. The instantaneous change in the measure of welfare
defined by Equation (A.26) is given by

d log Uτ = d log Gτ +
Dτ

1+Dτ
sD

G,τ d log PD
τ + sX

G,τ d log PX
τ

− 1
1+Dτ

sF
G,τ d log PF

τ − sM
G,τ d log PM

τ + 1
1+Dτ

dDτ,

where the price indices Pj
τ for j ∈ {D, X, M} are defined following the production-side

definition in Equation (A.23), and where the change in the price index of imported final
goods d log PF

τ can be defined using definition in Equation (A.18). Approximate integra-
tion of this result leads to the following second-order approximation

∆ log Ut = ∆ log Gt +
(

Dt
1+Dt

sD
G,t

)
∆ log PD

t + sX
G,t ∆ log PX

t

−
(

1
1+Dτ

sF
G,τ

)
∆ log PF

t − sM
G,t ∆ log PM

t +
(

1
1+Dt

)
∆Dt + O

(
δ3
)

, (A.27)

where δ ≡ max
{

maxk∈{D,X,F,M}
{∣∣∆ log Pk

t
∣∣} , ∆Dt

}
. Equation (A.27) shows that, keep-

ing domestic technology and factor inputs as fixed, lowering the prices of final or inter-
mediate imported goods leads to welfare gains. Moreover, in the special case of balanced
trade D ≡ 0, Equation (A.27) simplifes to the standard result that decomposes changes of
welfare into changes in domestic technology, factor inputs, and terms-of-trade shocks

∆ log Ut = ∆ log Gt + sX
G,t ∆ log PX

t − sImp
G,t ∆ log PImp

t + O
(

δ3
)

,
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where sImp
G,t is the total share of all imported goods in GDP, and where the price index of

imports satisfies ∆ log PImp
t ≡

(
sF

G,τ/sImp
G,t

)
∆ log PF

t +
(

sM
G,t/sImp

G,t

)
∆ log PM

t .

A.4.2 Intermediate Import Demand

Our construction for the import price indices following the setting in Sections 2.1 and
2.4.3 relies on a consumption-based approach. We can use the production-based approach
used in this section to provide an alternative derivation for the components of the import
price index that are used as intermediate inputs in the production sector of the economy.
We can use the definition of the GDP function in Equation (A.21), along with the envelope
theorym, to derive the demand for an imported good i ∈ ID as qit = ∂Rt/∂pit. However,
unlike our construction in Section 2, this specification does not explicitly account for the
potential substitutability between domestic and imported varieties of intermediate prod-
ucts. To derive a specification of import demand that allows us to explicitly account
for the substitutability between domestic and imported goods, we need to specify input-
output structure of the domestic production technology Γt in terms, not only of the factors
used and products produced, but also of intermediate products used in the process. The
following lemma sets up an example of the types of such input-output structures that are
compatible with the homothetic demand systems considered in Sections 2.1 and 2.4.3.

Proposition A.3. (Intermediate Import Price Index) Let I I ≡ IH ∪ IMdenote the set of all inter-
mediate products, including domestically produced set IH and the imported intermediate inputs
IM. Assume a collection of price taking production units n ∈ N with production technologies
characterized by

yn = At Zn

[
F (F )1−α F I

n

(
q

φ,I
n

)α]γ
, 0 < α < 1, γ < 1,

where yn = qn
i is the output of unit n in a specific product i ∈ ID ∪ IX produced domestically

by this unit, and where F (·) and F I
n (·) are constant-returns-to-scale aggregators of factor and

material inputs, respectively, with the latter potentially varying by unit. Under the above assump-
tions, the demand for intermediate goods I I can be characterized by a homothetic demand system
defined in Section 2.1, in the sense that the expenditure share S I

i
(
pφ,I) of product i is only a

function of quality-adjusted vector of product prices qφ,I
n and is characterized by a scale-invariant

demand system as that characterized in Section 2.2.

Proof. See Appendix B.1 on page A29.
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A.5 More Details on Homothetic with Aggregator Family

A.5.1 Local Demand Inversion

Another important feature of the H(S/I)A demand systems presented in Definition 1 is
that we can analytically invert the matrix linking relative prices to relative expenditure
shares. The following lemma characterizes this inverted matrix.

Lemma A.4. The elements of the inverse of the matrix
[
Ψij
]

mapping relative prices to relative
expenditure shares for the HA demand systems introduced in Definition 1 are given by

Ξ−1
ij = µiIij −


sj

1+µi
1+µ

(
µj − µ

)
, HDIA,

sj
µi
µ

(
µj − µ

)
, HIIA,

sj
(
µj − µ

)
, HSA,

(A.28)

where Ξ ≡ Ψ
(

Σd − I
)

, where Iij = 1 if i = j and Iij = 0 otherwise, and where the love-of-

variety index µi for each product is defined by µi ≡ 1
εi−1 with εi given by Equation (12).

Proof. See Appendix B.1 on page A31.

A.5.2 Approximate Price Index with Product Entry/Exit

Moreover, we use Lemma A.4 to specialize the general expression for the approximate
price index for homothetic preferences in Proposition 3 to the family of HA preferences.
Proposition A.4 below states this result.

Proposition A.4. (Approximate Price Index for H(S/I)A Preferences) For the three families of HA
demand systems introduced in Definition 1, assuming all products within the base set continue
from period t − 1 to period t, that is Ot ⊂ V∗

t , we have the following approximation for the change
in the price index

∆ log Pt = ∑
i

ϖti∆ log pit + ∑
i

ϖit
1

εit−1 ∆ log sit − ∑
i

Λ∗
t s∗itι

o
t

(
1

εit−1 −
(

1
εit−1

))
∆ log s∗it

+

(
∑

i
ϖit

1
εit−1

)
∆ log Λ∗

t − ∆
(

ιot

(
1

εit−1 −
1

εit−1

∗

t

))
+ O

(
δ3
)

, (A.29)

where we have defined 1
εit−1 ≡ ∑i sit

1
εit−1 , 1

εit−1

∗
≡ ∑i s∗it

1
εit−1 , ιot ≡ ∑i ϖit ıit, , and ιot−1 ≡

∑i ϖit ıit−1, with ιit ≡ 1+1/(εit−1)
1+1/(εit−1)

for HDIA, ιit ≡ 1/(εit−1)
1/(εit−1)

for HIIA, and ιit ≡ 1 for HSA, and
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where δ is defined as in Proposition 3. The contribution of quality change ∆ log Φt in the set of
continuing products, and product entry and exit ∆ log Xt satisfy:

∆ log Φt = ∑
i

(
s∗it − ϖit

)
∆ log pit + ∑

j∈I∗t

(
s∗it − ϖit

)
1

εit−1

(
∆ log s∗jt + ∆ log Λ∗

t

)

− ∑
i

Λ∗
t s∗it (ι

∗
t − ιot )

(
1

εit−1 −
(

1
εit−1

))
∆ log s∗it − ∆

(
(ι∗t − ιot )

(
1

εit−1 −
1

εit−1

∗

t

))
,

(A.30)

∆ log Xt = ∑
j∈I∗t

s∗it
1

εit−1

(
∆ log s∗jt + ∆ log Λ∗

t

)
− ∑

i
Λ∗

t s∗itι
∗
t

(
1

εit−1 −
(

1
εit−1

))
∆ log s∗it (A.31)

− ∆
(

ι∗t

(
1

εit−1 −
1

εit−1

∗

t

))
− ∆

(
E

s∗t
i [ιit] (µt − µ∗

t )
)

, (A.32)

where ι∗t ≡ ∑i s∗itιit.

Proof. See Appendix B.1 on page A35.

Finally, we can provide a decomposition of the gap in the inferred price index under
the HA family and under a CES specification. Assume that the true underlying prefer-
ences belong to a member of the HA family, in line with Proposition A.4. Assume now
that we have used a misspecified CES model, estimated to have an elasticity of substi-
tution σ̂. The gap between the change in the true price index and that implied by the
estimated CES model is given by

∆ log Pt − ∆ log P̂CES
t =

Gap in mean elasticities︷ ︸︸ ︷(
∑

i
ϖitµit − 1

σ̂−1

)(
∑

i
ϖit∆ log s∗iτ + ∆ log Λ∗

t

)

+Covϖt
i

(
µit, ∆ log s∗iτ

)
− ∑

i
Λ∗

t s∗itι
∗
t

(
1

εit−1 −
(

1
εit−1

))
∆ log s∗it − ∆

(
ι∗t

(
1

εit−1 −
1

εit−1

∗

t

))
︸ ︷︷ ︸

Heterogeneity in cross-product elasticities

,

(A.33)

where Covϖt
i (·, ·) denotes the covariance operator under the distribution ϖt. The term

on the first line accounts for the contribution of the gap between the mean of the love
of variety indices across base products and the one implied by the CES model, and the
second line accounts for the contribution of heterogeneity in the matrix of cross-product
elasticities of substitution, which is absent in the CES model.
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A.5.3 Specifications for the Kimball Aggregator

We recover standard CES preferences by choosing Kimball function K(q̌; ς) ≡ q̌1−1/σ in
Equation (??) with the corresponding choice of parameterization ς ≡ (σ). Below, we
consider three additional parametric families of Kimball functions K (·; ς), each charac-
terized by a corresponding family of elasticity functions ẽ (·; ς), defined through the dual
function e (q̌; ς) ≡ 1/ẽ

(
(K′)−1 (q̌)

)
as follows.

1. Klenow and Willis (2006). This case involves an elasticity function

e (q̌; ς) ≡ q̌θ

σ
, ς ≡ (σ, θ) , (A.34)

that goes from zero (corresponding to infinite price elasticity) to infinity as the nor-
malized quantity goes from zero to infinity.

2. Finite–Infinite Limits: This case involves an elasticity function

e (q̌; ς) ≡ 1
σ + (σo − σ) q̌−θ

, σ < σo, θ > 0, ς ≡ (σ, σo, θ) , (A.35)

that goes from zero (corresponding to infinite price elasticity) to a finite value 1/σ

as the normalized quantity goes from zero to infinity.

3. Finite–Finite Limits: This case involves an elasticity function

e (q̌; ς) ≡ 1
σo

+

(
1
σ
− 1

σo

)
q̌θ

1 + q̌θ
, σ < σo, θ > 0, , ς ≡ (σ, σo, θ) , (A.36)

that goes from a finite value 1/σo to another finite value 1/σ as the normalized
quantity goes from zero to infinity.A2

Appendix B.2.1 below derives the Kimball functions K(·; ς) corresponding to each of the
three cases above.

A.6 Comparison of the Dynamic Panel Identification with Feenstra (1994)

In this section, we provide a brief comparison of the conceptual distinction between our
approach and that of Feenstra (1994), which in turn builds on earlier insights of Leamer

A2In the first and the last cases, the marginal utility of consuming every product at a zero level of con-
sumption (q̃i = 0) is infinity. Therefore, the demand takes a finite, nonzero value for every finite value of
price. In contrast, in the second case, the marginal utility of consuming every product at a zero level of
consumption (q̃i = 0) is finite. As a result, there is a finite choke price for any product, above which the
consumption falls to zero.
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(1981). For this purpose, let us consider a CES demand specification presented in Section
2.3.1, which leads to the following simple specification of demand

∆ log q̂it = −σ∆ log p̂it + ∆φit,

where we have defined log quantity and price relative to the base product q̂it ≡ qit/qot

and p̂it ≡ pit/pot in a simple setting where the set of base products is a singleton O ≡ {o},
and where, as before, φit stands for the demand shock. The Leamer–Feenstra approach to
identification begins with positing a supply relationship of the form

∆ log p̂it = ζ log ∆q̂it + ∆ξit, (A.37)

where ζ > 0 stands for the supply elasticity. The first key identification assumption
is that the supply and demand shocks are uncorrelated E [∆ξit∆φit] = 0. If we know
the supply elasticity ζ, then this assumption leads to a synthetic instrument zF−L

it (ζ) ≡
∆ log p̂it − ζ log ∆q̂it that allows us to identify σ through the moment condition

E
[
(∆ log q̂it + σ∆ log p̂it)× zF−L

it (ζ)
]
= 0. (A.38)

As shown in Feenstra (2010), the second key identification assumption is that there ex-
ists at least two products i and j for which the ratio of the variances of demand schock
and supply shocks are not identical (V [∆φit] /V [∆ξit] ̸= V

[
∆φjt

]
/V

[
∆ξ jt

]
).A3 We can

think of the role of this additional identification by heteroskedasticity assumption as that of
identifying the supply elasticity ζ, which would then enable condition (A.38) to iden-
tify the price elasticity of demand σ. In practice, the estimation strategy combines these
identification assumptions to simultaneously estimate both ζ and σ.

Now, let us compare Equation (A.37) with our pricing Equation (21). Assuming small
relative changes in all variables, we can write the change in log price in terms of the
change in log quantity and other variables as:

∆ log pit ≈
∂ log mcit
∂ log qit

+
∂ log µit
∂ log qit

1 − ∂ log µit
∂ log pit︸ ︷︷ ︸
≡ζit

∆ log qit +

∂ log mcit
∂φit

+
∂ log µit

∂φit

1 − ∂ log µit
∂ log pit

∆φit +

∂ log mcit
∂wit

1 − ∂ log µit
∂ log pit

∆wit + ∆vit︸ ︷︷ ︸
≡∆ξit

.

We can make two observations. First, in general the supply elasticity may vary over time

A3See also Soderbery (2015b) for a detailed discussion of how this condition helps identify the elasticities
using specific examples from trade data.
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and across products. Second, and more importantly, there are two potential grounds for
the violations of the Leamer–Feenstra identification assumption E [∆ξit∆φit] = 0. First,
to the extent that marginal cost depends on quality, i.e., ∂ log mcit

∂φit
̸= 0, there is a mechan-

ical correlation between supply shocks ∆ξit and demand shocks ∆φit. In addition, to
the extent that shocks to production costs ∆wit leads to endogenous responses in prod-
uct quality, we find another potential source of correlation between supply and demand
shocks.

In contrast, our approach begins by assuming a simple dynamic process like that
of Equation (17) on demand shocks. The same pricing Equation (21) now implies that
E [∆uit log pit−2], which leads to the following moment condition:

E [(∆ log q̂it + σ∆ log p̂it − ρ (∆ log q̂it−1 + σ∆ log p̂it−1))× log pit−2] = 0.

If we know ρ, the term ρ (∆ log q̂it−1 + σ∆ log p̂it−1) gives us a control function that ac-
counts for the potential persistence between lagged price and current change in demand
shocks, allowing us to identify the price elasticity σ. To recover the persistence param-
eter ρ, the same Equation (17) also implies that E [∆uit φit−2] leading to another moment
condition

E [(∆ log q̂it + σ∆ log p̂it − ρ (∆ log q̂it−1 + σ∆ log p̂it−1))× φit−2] = 0.

Just like the Leamer–Feenstra approach, we also combine the moment conditions in a
GMM framework to jointly estimate both σ and ρ.

To summarize, our approach averts the need to make the counterfactual assumption
that marginal costs do not depend on product quality by relying on the panel structure of
the data and imposing restrictions on the dynamics of demand shocks.

B Proofs and Derivations

B.1 Proofs

Proof for Proposition 1. This result is a special case of ProÏposition 3 for the case in which
the set of continuing products is the same as the entire set of products, I∗t ≡ I. Note
that in the proof of Proposition 3, included below, the condition in the statement of the
proposition that Ψ−1

ij /sj remains everywhere bounded for all i ̸= j is only used in deriving
the expression for the contribution of product entry and exit. As such, this condition is
not required in the special case of Proposition 1 without product entry and exit.
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Proof for Lemma 1. First, note that for any income-invariant demand system we have

∂ log s̃i

∂ log pj
=

∂ log
(

pi q̃i
P Q(u)

)
∂ log pj

= sj
(
σij − 1

)
, i ̸= j. (B.1)

Next, we use the definition in Equation (9), letting A = ∑i p̌idi ( p̌i) and si = p̌idi ( p̌i) /A,
we find

∂ log s̃i

∂ log pj
=

∂ log [ p̌idi ( p̌i)]

∂ log pj
− ∂ log A

∂ log pj
,

= (εi − 1)
∂ log h̃ (pφ)

∂ log pj
− ∂ log A

∂ log pj
, i ̸= j, (B.2)

where we have used the fact that ∂ log p̌i
∂ log pj

= − ∂ log h̃(pφ)
∂ log pj

for i ̸= j. Next, we compute the
elasticity of the aggregator A with respect to price pj :

∂ log A
∂ log pj

=
∂ log [∑i′ p̌i′ di′ ( p̌i′)]

∂ log pj
,

=
∑i′ ̸=j p̌i′ di′ ( p̌i′)

∂ log[ p̌i′ di′( p̌i′)]
∂ log pj

+ p̌j dj
(

p̌j
) ∂ log[ p̌j dj( p̌j)]

∂ log pj

∑i′ p̌i′ di′ ( p̌i′)
,

=
∑i′ ̸=j p̌i′ di′ ( p̌i′) (εi′ − 1) ∂ log h̃

∂ log pj
+ p̌j dj

(
p̌j
) (

ε j − 1
) ( ∂ log h̃(pφ)

∂ log pj
− 1
)

∑i′ p̌i′ di′ ( p̌i′)
,

=
∑i′ p̌i′ di′ ( p̌i′) (εi′ − 1)

∑i′ p̌i′ di′ ( p̌i′)

∂ log h̃
∂ log pj

−
p̌j dj

(
p̌j
) (

ε j − 1
)

∑i′ p̌i′ di′ ( p̌i′)
,

= (ε − 1)
∂ log h̃
∂ log pj

− sj
(
ε j − 1

)
.

Substituting this in Equation (B.2), we find

∂ log s̃i

∂ log pj
= sj

(
ε j − 1

)
+ (εi − ε)

∂ log h̃
∂ log pj

, i ̸= j. (B.3)

We now compute ∂ log h̃(pφ)
∂ log pj

for each of the three specifications in Definition 1. For HSA,
from A = 1, we have

0 =
∂ log A
∂ log pj

= (ε − 1)
∂ log h̃
∂ log pj

− sj
(
ε j − 1

)
,
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leading to
∂ log h̃
∂ log pj

= sj
ε j − 1
ε − 1

.

Combining this result with Equations (B.1) and (B.3), we find

sj

(
ε j − 1 + (εi − ε)

ε j − 1
ε − 1

)
= sj

(
σij − 1

)
,

which leads to the desired result in Equation (11) for the case of HSA.
For the choice of HDIA demand, based on Equation (10), we can derive the price

derivatives of the aggregator h̃ as follows

0 =
∂h̃
∂pj

∑
i

∂

∂h

∫ di

(
e−φi pi

h

)
0

d−1
i (v) dv

+
∂

∂pj

∫ dj

(
e
−φj pj

H

)
0

d−1
j (v) dv

 ,

=
∂h̃
∂pj

∑
i

∂di

(
e−φi pi

h

)
∂h

e−φi pi

h
+

∂dj

(
e−φj pj

h

)
∂pj

e−φj pj

h
,

= − ∂h̃
∂pj

∑
i

e−φi pi

h2 d′i

(
e−φi pi

h

)
e−φi pi

h
+

e−φj

h
d′j

(
e−φj pj

h

)
e−φj pj

h
,

leading to the following result

∂ log h̃
∂ log pj

=

e−φj pj
h dj

(
e−φj pj

h

)
×

e
−φj

h d′j

(
e
−φj pj

h

)

dj

(
e
−φj pj

h

)

∑i
e−φi pi

h di

(
e−φi pi

h

)
×

e−φi
h d′i

(
e−φi pi

h

)
dj

(
e−φi pi

h

)
,

=
sjε j

ε
,

Combining this result with Equations (B.1) and (B.3), we find

sj

(
ε j − 1 + (εi − ε)

ε j

ε

)
= sj

(
σij − 1

)
,

which leads to the desired result in Equation (11) for the case of HDIA.
For the HIIA specification, based on Equation (10), we can derive the price derivatives
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of the aggregator h̃ as follows

0 =
∂h̃
∂pj

∑
i

∂

∂h

∫ e−φi pi
h

0
di (v) dv

+
∂

∂pj

∫ e
−φj pj

H

0
dj (v) dv

 ,

=
∂h̃
∂pj

∑
i

∂
(

e−φi pi
h

)
∂h

di

(
e−φi pi

h

)
+

∂

(
e−φj pj

h

)
∂pj

dj

(
e−φj pj

h

)
,

= − ∂h̃
∂pj

∑
i

e−φi pi

h2 di

(
e−φi pi

h

)
e−φi pi

h
+

e−φj

h
dj

(
e−φj pj

h

)
,

leading to the following result

∂ log h̃
∂ log pj

=

e−φj pj
h dj

(
e−φj pj

h

)
∑i

e−φi pi
h di

(
e−φi pi

h

) ,

= sj,

Combining this result with Equations (B.1) and (B.3), we find

sj
(
ε j − 1 + εi − ε

)
= sj

(
σij − 1

)
,

which leads to the desired result in Equation (11) for the case of HIIA.

Proof for Proposition 3. First, we consider the paths of quality-adjusted prices along the
two consecutive periods t − 1 and t as constructed as in Appendix A.1.1 in the gen-
eral case with possible product entry/exit. The instantaneous change in the price index
d log Pτ over the period τ ∈ (t, t − 1) along such paths is characterized in Lemma A.2 in
Appendix A.1.2. To derive the desired result in Proposition 3, we approximately integrate
the instantaneous change in the price index d log Pτ over the period τ ∈ (t, t − 1) along
the paths of quality-adjusted prices.

To apply the approximate integration, we use the following standard result on the
error of the first and second order integration rules:

I ≡
∫ vt

vt−1

f (v) dv = ∑
j

f ′ (vt−1) (vt − vt−1) +
1
2

f ′′
(

v†
1

)
(vt − vt−1)

2 , (B.4)

= ∑
j

f ′ (vt) (vt − vt−1)−
1
2

f ′′
(

v†
2

)
(vt − vt−1)

2 , (B.5)
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= ∑
j

1
2 ( f (vt−1) + f (vt−1)) (vt − vt−1)−

1
12

f ′′′
(

v†
3

)
(vt − vt−1)

3 ,

(B.6)

for some v†
1, v†

2, v†
3 ∈ [vt−1, vt]. From this, it then follows that I = f (vt−1)∆vt +O

(
|∆vt|2

)
=

f (vt)∆vt +O
(
|∆vt|2

)
= f (vt)∆vt +O

(
|∆vt|3

)
. Now, we integrate Equation (A.3) from

Lemma A.2 in Appendix A.1.2 and apply Equation (B.6) to find

∆ log Pt =
∫ t

t−1
d log Pτ,

= ∑
i∈Ot

ϖit

∫ t

t−1
d log piτ + ∑

i∈Ot

∑
j∈I∗t

ϖit

∫ t

t−1

1
σii,τ−1 Ψ−1

ij,τ d log s∗jτ

+ ∑
i∈Ot

∑
j∈I∗t

ϖit

∫ t

t−1

1
σii,τ−1 Ψ−1

ij,τ d log Λ∗
τ

+ ∑
i∈Ot

∑
j∈It−1\I∗t

ϖit

∫ t

t−1

1
σii,τ−1

Ψ−1
ij,τ

sjτ
dsjτ

+ ∑
i∈Ot

∑
j∈It\I∗t

ϖit

∫ t

t−1

1
σii,τ−1

Ψ−1
ij,τ

sjτ
dsjτ,

≈ ∑
i∈Ot

ϖit∆ log pit + ∑
i∈Ot

ϖit ∑
j∈I∗t

1
2

(
1

σii,t−1−1 Ψ−1
ij,t−1 +

1
σii,t−1 Ψ−1

ij,t

)
∆ log s∗jτ

+ ∑
i∈Ot

ϖit ∑
j∈I∗t

1
2

(
1

σii,t−1−1 Ψ−1
ij,t−1 +

1
σii,t−1 Ψ−1

ij,t

)
∆ log Λ∗

t

+ ∑
i∈Ot

∑
j∈It−1\I∗t

ϖit
1

σii,t−1−1

Ψ−1
ij,t−1

sjt−1

(
−sjt−1

)
+ ∑

i∈Ot

∑
j∈It\I∗t

ϖit
1

σii,t−1

Ψ−1
ij,t

sjt
sjt + O

(
δ3
)

,

where we have used the approximation in Equation (B.6) in evaluating the first three
integrals, and the first-order approximations in Equations (B.4) and (B.5), as well as the
assumption that Ψ−1

ij /sj is always everywhere bounded for all i and j, in evaluating the
fourth and fifth integrals. Note that we need this assumption only for the terms involving
the set I†

t of entering and exiting products and, as such, it is not needed for the special
case of the proposition presented in Proposition 1.

Proof for Proposition 4. The steps closely follow those used in the proof of Proposition 3
above, but instead rely on the approximate integration of the expression for the Divisia
index given by Lemma A.3 in Equation (A.8). Multiplying both sides by the denominator
of the right hand side, first we note that the integral of d log PI I

τ is given as before. The only
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difference compared to the case of Proposition 3 is that we now have to two following
additional terms∫ t

t−1
∑
i,j

ϖit
σii,τ−1 Ψ−1

ij,τ
(
ηjτ − 1

)
d log Pτ = ∑

i,j

ϖit
σii,t−1 Ψ−1

ij,t
(
ηjt − 1

)
∆ log Pt,

∫ t

t−1
∑
i,j

ϖit
σii,τ−1 Ψ−1

ij,τ
(
ηjτ − 1

)
d log yτ = ∑

i,j

ϖit
σii,t−1 Ψ−1

ij,t
(
ηjt − 1

)
∆ log yt,

leading to the desired result.

Proof for Proposition A.1. First, we compute the cross-product elasticities for the uncom-
pensated (Marshallian) demand q̃uc

i (p, y) as follows. Letting V (p, y) denote the indirect
utility function, we have

∂ log q̃uc
i (p, y)

∂ log pj
=

∂ log q̃i (p, V (p, y))
∂ log pj

,

=
∂ log q̃i

∂ log pj
+

∂ log q̃i

∂u
∂V

∂ log pj
,

= sjσij +
∂ log q̃i

∂u
pj

(
−∂V

∂y

)
qj,

= sjσij −
pjqj

y
∂ log q̃i

∂ log y
,

= sj
(
σij − ηi

)
. (B.7)

where ηi denotes the income elasticity of demand. For the own-price elasticity, we have

∂ log q̃uc
i

∂ log pi
=

∂ log q̃i

∂ log pi
+

∂ log q̃i

∂u
∂V

∂ log pi
= (si − 1) σii − siηi. (B.8)

Next, we can write the change in the expenditure of good i at any moment τ along the
path as

d log siτ = ∑
j ̸=i

∂ log q̃uc
jτ

∂ log pjτ

(
d log pjτ − dφjτ

)
+

(
1 +

∂ log q̃uc
iτ

∂ log piτ

)
(d log piτ − dφiτ)

+

(
∂ log q̃uc

iτ
∂ log yτ

− 1
)

d log yτ,

= ∑
j ̸=i

sjτ
(
σij,τ − ηiτ

) (
d log pjτ − dφjτ

)
+ (1 + (siτ − 1) σii,τ − siτηiτ) (d log piτ − dφiτ) + (ηiτ − 1) d log yτ,
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= − (σii,τ − 1) (d log piτ − dφiτ) + ∑
j

sjτσij,τ
(
d log pjτ − dφjτ

)
− ηiτ ∑

j
sjτ
(
d log pjτ − dφjτ

)
+ (ηiτ − 1) d log yτ,

= − (σii,τ − 1) (d log piτ − dφiτ) + ∑
j

sjτσij,τ
(
d log pjτ − dφjτ

)
− ηiτ d log Pτ + (ηiτ − 1) d log yτ,

= − (σii − 1) (d log pi − dφi − d log P) + ∑
j

sjτ
(
σij,τ − σii,τ

) (
d log pjτ − dφjτ − d log Pτ

)
+ (ηiτ − 1) (d log yτ − d log Pτ) .

where in the second equality we have used Equations (B.7) and (B.8), and in the fourth
and the last equalities we have used the definition in Equation (A.2). We can rewrite the
above equation as in Equation (A.1) with the definition

Ξ ≡ Σd
τ − I +

(
Στ − στ1

′)diag (sτ) ,

=

[
I +

(
Στ − στ1

′)diag (sτ)
(

Σd
τ − I

)−1
] (

Σd
τ − I

)
.

Proof for Lemma A.2. First, we construct the smooth paths of quality-adjusted prices and
total expenditure between each two consecutive periods following the setup in Appendix
A.1.1. Lemma A.1 characterizes the change log expenditure shares as a function of changes
in quality-adjusted prices and total expenditure everywhere along this path. We can ac-
cordingly write the change in log expenditure shares from Equation (A.1) under the in-
come invariant case (ηiτ ≡ 1) as:

d log siτ = −∑
j

Ψij,τ
(
σjj,τ − 1

) (
d log pjτ − dφjτ − d log Pτ

)
.

If the demand system satisfies the connected substitute property of Berry et al. (2013), we
know that the demand system, and thus this relationship, is invertible and the inverse of
the matrix Ψτ

(
Σd

τ − I
)

exists for all τ. Inverting the relationship in Equation (A.1) gives
us

d log piτ − dφiτ − d log Pτ = −∑
j∈I

1
σii,τ−1 Ψ−1

ij,τd log sjτ. (B.9)

Page A24



First, averaging over the products the base set Ot using the distribution ϖit, we find

∑
i

ϖitd log piτ − ∑
i

ϖitdφiτ − d log Pτ = −∑
i

ϖit ∑
j∈I

1
σii,τ−1 Ψ−1

ij,τd log sjτ,

= −∑
i

ϖit ∑
j∈I∗t

1
σii,τ−1 Ψ−1

ij,τ

(
d log s∗jτ + d log Λ∗

τ

)
− ∑

i
ϖit ∑

j∈It\I∗t

1
σii,τ−1 Ψ−1

ij,τd log sjτ,

which leads to the desired result using the assumption ∑i ϖitdφiτ = 0. Note that we have
used the fact that siτ = s∗iτΛ∗

τ for all i ∈ I∗t .
In the special case in which I∗t ≡ I, we have:

∑
i

ϖit log piτ − d log Pτ = −∑
i

ϖit ∑
j∈I

1
σii,τ−1 Ψ−1

ij,τd log sjτ,

leading to the result in Proposition 1.
Next, using Equation (B.9), we can write

dφiτ = d log piτ − d log Pτ + ∑
j∈It

1
σii,τ−1 Ψ−1

ij,τd log sjτ,

= d log piτ − d log Pτ + ∑
j∈I∗t

1
σii,τ−1 Ψ−1

ij,τ

(
d log s∗jτ + d log Λ∗

τ

)
+ ∑

j∈I†
t

1
σii,τ−1 Ψ−1

ij,τ d log sjτ, (B.10)

= d log piτ − ∑
i

ϖitd log piτ + ∑
j∈I∗t

(
1

σii,τ−1 Ψ−1
ij,τ − ∑

i

ϖit
σii,τ−1 Ψ−1

ij,τ

)(
d log s∗jτ + d log Λ∗

τ

)
+ ∑

j∈V†
t

(
1

σii,τ−1 Ψ−1
ij,τ − ∑

i

ϖit
σii,τ−1 Ψ−1

ij,τ

)
d log sjτ, (B.11)

where in the third equality, we have substituted for d log Pτ from Equation (A.3). Equation
(A.5) then follows from Equation (B.9). Substituting Equation (B.10) in Equation (A.4), we
find

d log Xτ = ∑
i,j∈I∗t

s∗iτ
σii,τ−1 Ψ−1

ij,τ

(
d log s∗jτ + d log Λ∗

τ

)
+ ∑

i∈I∗t

s∗iτ
σii,τ−1 ∑

j∈I†
t

Ψ−1
ij,τ d log sjτ.
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Proof for Lemma A.3. Once again, we construct the smooth paths of quality-adjusted prices
and total expenditure between each two consecutive periods following the setup in Ap-
pendix A.1.1. Lemma A.1 characterizes the change log expenditure shares as a function
of changes in quality-adjusted prices and total expenditure everywhere along this path.
If the demand system satisfies the connected substitute property of Berry et al. (2013), the
inverse of the matrix Ψτ

(
Σd

τ − I
)

exists for all τ, which allows us to write

d log piτ − dφiτ − d log Pτ = − ∑
j∈I∗t ∪I†

t

1
σii,τ−1 Ψ−1

ij,τ
(
d log sjτ − (ηiτ − 1) (d log yτ − d log Pτ)

)
.

(B.12)
Averaging over the products the base set Ot using the distribution ϖit and using the as-
sumption ∑i ϖitdφiτ = 0, we find

∑
i

ϖitd log piτ − d log Pτ = −∑
i

ϖit ∑
j∈I∗t ∪I†

t

1
σii,τ−1 Ψ−1

ij,τd log sjτ

+ ∑
i

ϖit ∑
j∈I∗t

1
σii,τ−1 Ψ−1

ij,τ (ηiτ − 1) (d log yτ − d log Pτ) ,

which leads to the desired result.

Proof for Proposition A.1. We apply the second-order approximate integration of Equation
(B.6) to the results of Lemma A.2 to find the contribution of prices

∑
i∈I∗t

∫ t

t−1
s∗iτd log piτ = ∑

i∈I∗t

s∗it ∆ log piτ + O
(

δ3
)

.

wSimilarly, we integrate Equation (A.5) using the approximation in Equation (B.6) in eval-
uating the first three integrals, and the first-order approximations in Equations (B.4) and
(B.5) for the last two

∫ t

t−1
∑

i
s∗iτdφiτ = ∑

i∈I∗t

∫ t

t−1
(s∗iτ − ϖit) d log piτ + ∑

j∈I∗t

∫ t

t−1
(s∗iτ − ϖit)Ψ−1

ij,τ

(
d log s∗jτ + d log Λ∗

τ

)

+ ∑
j∈V†

t

∫ t

t−1
(s∗iτ − ϖit)

Ψ−1
ij,τ

sjτ
dsjτ,

= ∑
i∈I∗t

(
1
2

(
s∗it−1 + s∗it

)
− ϖit

)
∆ log piτ

+ ∑
i∈I∗t

∑
j∈I∗t

(
1
2

(
s∗it−1Ψ−1

ij,t−1 + s∗itΨ
−1
ij,t

)
− ϖit

1
2

(
Ψ−1

ij,t−1 + Ψ−1
ij,t

)) (
∆ log s∗jt + ∆ log Λ∗

t

)
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+ ∑
i∈I∗t

∑
j∈It\I∗t

(s∗it − ϖit)
Ψ−1

ij,t

sjt

(
sjt
)
+ ∑

i∈I∗t
∑

j∈It−1\I∗t

(
s∗it−1 − ϖit

) Ψ−1
ij,t−1

sjt−1

(
−sjt−1

)
+ O

(
δ3
)

,

which leads to Equation (A.9). Applying similar arguments, we can approximate the
integral of Equation (A.6):

∫ t

t−1
d log Xτ = ∑

j∈I∗t

∫ t

t−1
s∗iτΨ−1

ij,τ

(
d log s∗jτ + d log Λ∗

τ

)

+ ∑
j∈V†

t

∫ t

t−1
s∗iτ

Ψ−1
ij,τ

sjτ
dsjτ,

= ∑
j∈I∗t

1
2

(
s∗it−1Ψ−1

ij,t−1 + s∗itΨ
−1
ij,t

) (
∆ log s∗jt + ∆ log Λ∗

t

)

+ ∑
j∈It\I∗t

s∗it
Ψ−1

ij,t

sjt

(
sjt
)
+ ∑

j∈It−1\I∗t

s∗it−1

Ψ−1
ij,t−1

sjt−1

(
−sjt−1

)
+ O

(
δ3
)

,

leading to Equation (A.10).
Finally, we can also integrate Equation (B.11) to approximate the change in quality for

a given product i ∈ I∗t between the two periods:

∆φit =
∫ t

t−1
dφτ,

=

∫ t

t−1
d log piτ − ∑

i′∈I∗t

ϖi′t

∫ t

t−1
d log pi′τ


+ ∑

j∈I∗t

∫ t

t−1

Ψ−1
ij,τ − ∑

i′∈I∗t

ϖi′tΨ
−1
i′ j,τ

(d log s∗jτ + d log Λ∗
τ

)

+ ∑
j∈It\I∗t

∫ t

t−1

Ψ−1
ij,τ − ∑

i∈I∗t

ϖi′tΨ
−1
i′ j,τ

 dsjτ

sjτ
,

leading to Equation (A.11).

Proof for Proposition A.2. Based on the separability assumption in Equation (A.19), we can
write the Hicksian demand for product i as

qi =
∂P
∂Pk

∂Pk

∂pj
,
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=
qi

Qk Qk,

where Qk in the quantity aggregate of the demand for products in category k. Accord-
ingly, we can write the cross-product elasticities of substitution between products i and
j in terms of the cross-category elasticities of substitution and within-category elasticities
of substitution as

σij =
1
sj

∂ log qi

∂ log pj
=

1
sj

∂ log Qk

∂ log Pℓ

∂ log Pℓ

∂ log pj
, i ∈ Ik, j ∈ Iℓ, k ̸= ℓ

=
1
sj

sj

sℓ
∂ log Qk

∂ log Pℓ
= σC

kℓ, (B.13)

σij =
1
sj

∂ log qi

∂ log pj
=

1
sk

1
sj/sk

∂ log
(
qi/Qk)

∂ log pj
+

1
sj

∂ log Pk

∂ log pj

∂ log Qk

∂ log Pk , i, j ∈ Ik,

=
1
sk σk

ij +
1
sj

sj

sk
∂ log Qk

∂ log Pk ,

=
1
sk

(
σk

ij − σC
kk

(
1 − sk

))
, (B.14)

where σC
kℓ is the cross-category elasticity of substitution at the level of the upper nest and

where σk
ij is defined as the within-category elasticity of substitution between products i

and j as in Section A.3. Using the above results, we can also write the own price elasticity
of product i aspects

∂ log q̃i

∂ log pi
= −∑

j ̸=i
sjσij = − ∑

j∈Ik,j ̸=i

sjσij − ∑
ℓ ̸=k

∑
j∈Iℓ

sjσij,

=
σC

kk
sk

(
1 − sk

) (
sk − si

)
− ∑

j∈Ik,j ̸=i

sj

sk σk
ij − ∑

ℓ ̸=k
sℓσC

kℓ,

= σC
kk

(
1 − sk

) (
1 − sk

i

)
− σk

ii

(
1 − sk

i

)
− σC

kk

(
1 − sk

)
,

= −σC
kk

(
1 − sk

)
sk

i − σk
ii

(
1 − sk

i

)
. (B.15)

Using the above results, and assuming income invariance, we can rewrite the rela-
tionship between changes in the log expenditure share of product i and changes in log
relative quality-adjusted prices of all other products as

d log siτ =

(
1 − ∂ log q̃i

∂ log pi

)
(d log piτ − dφiτ) + ∑

j ̸=i∈Ik

sjτσij,τ
(
d log pjτ − dφjτ

)
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+ ∑
ℓ ̸=k

∑
j∈Iℓ

sjτσij,τ
(
d log pjτ − dφjτ

)
− d log Pτ,

=
[
1 − σC

kk,τ

(
1 − sk

τ

)
sk

iτ − σk
ii,τ

(
1 − sk

iτ

)]
(d log piτ − dφiτ)

+ ∑
j ̸=i∈Ik

1
sk

τ

(
σk

ij,τ − σC
kk,τ

(
1 − sk

τ

))
sjτ
(
d log pjτ − dφjτ

)
+ ∑

ℓ ̸=k
sℓτσC

kℓ,τ ∑
j∈Iℓ

sℓjτ
(
d log pjτ − dφjτ

)
− d log Pτ,

= − ∑
j∈Ik

Ψk
ij,τ
(
d log pjτ − dφjτ

)
− σC

kk,τ

(
1 − sk

τ

)
∑
j∈Ik

sk
jτ
(
d log pjτ − dφjτ

)
+ ∑

ℓ ̸=k
sℓτσC

kℓ,τ d log Pℓ
τ − d log Pτ,

= − ∑
j∈Ik

Ξk
ij,τ
(
d log pjτ − dφjτ

)
− d log Pk

τ

+

(
1 − ∂ log Qk

τ

∂ log Pτ

)
d log Pk

τ + ∑
ℓ ̸=k

sℓτσC
kℓ,τ

(
d log Pℓ

τ − d log Pτ

)
,

= ∑
j∈Ik

Ψk
ij,τ

(
d log pjτ − dφjτ − d log Pk

τ

)
− d log sk

τ,

where in the second equality, we have substituted from Equations (B.13), (B.14), and (B.15)
and in the third equality, we have substituted the expression for the within category Ξk

τ ≡
Ψk

τ

(
Σk,d

τ − I
)

, noting that d log Pk
τ ≡ ∑j∈Ik sk

jτ
(
d log pjτ − dφjτ

)
. From the above result, it

follows that
d log sk

iτ = ∑
j∈Ik

Ξk
ij,τ

(
d log pjτ − dφjτ − d log Pk

τ

)
.

Accordingly, we can apply the same arguments as in Proposition 3 to each product cat-
egory to derive the corresponding approximate price index ∆ log Pk

τ between each two
consecutive periods.

Proof for Proposition A.3. Let us first solve for the cost minimization problem of each unit
of production

Cnt = min ∑
j

WjtFn
jt + ∑

i
pφ

nitq
φ
nit, s.t. ynt ≥ At Zn

[
F (Fnt)

1−α F I
n

(
q

φ,I
nt

)α]γ
,

= min ∑
j

WjtFn
jt + ∑

i
pφ

nitq
φ
nit, s.t. ynt ≥ At Zn

[(
FF

nt

)1−α (
FI

nt

)α
]γ

,
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and such that FF
nt ≥ F (Fnt) and FI

nt ≥ F I
n

(
q

φ,I
nt

)
. Since functions F and F I

n are ho-

mogenous of degree 1, we can write their cost functions as ∑j WjtFn
jt = FF

nt PF (Wt) and

∑i pφ
njtq

φ
njt = FI

nt P I
n

(
p

φ,M
t

)
, thus simplifying the problem as

Cnt = FF
nt PF (Wt) + FI

nt P I
n

(
p

φ,I
t

)
, s.t. ynt ≥ At Zn

[(
FF

nt

)1−α (
FI

nt

)α
]γ

.

Taking the first-order conditions leads to

PF (Wt) = λnt γ (1 − α)
ynt

FF
nt

,

P I
n

(
p

φ,I
t

)
= λnt γα

ynt

FI
nt

,

which gives us Cnt = λnt γ ynt. Finally, we compute λnt by substituting the above expres-
sions for FF

nt and FI
nt in the constraint

ynt = At Zn

(λnt γ (1 − α) ynt

PF (Wt)

)1−α
 λnt γα ynt

P I
n

(
p

φ,I
t

)
αγ

,

= (γλntynt)
γ AtZn

( 1 − α

PF (Wt)

)1−α
 α

P I
n

(
p

φ,I
t

)
αγ

,

leading to the following result

λntynt =
1
γ

(
PF (Wt)

1 − α

)1−α
P I

n

(
p

φ,I
t

)
α

α (
ynt

AtZn

) 1
γ

. (B.16)

Substituting this in Cnt = λnt γ ynt gives us the following cost function

Cnt =

(
ynt

AtZn

) 1
γ
(
PF (Wt)

1 − α

)1−α
P I

n

(
p

φ,I
t

)
α

α

, (B.17)

for unit-level production technologies.

Equalizing marginal costs λnt across firms from Equation (B.16) implies that the rela-
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tive size of output across two units n and n′ satisfies

ynt

yn′t
=

(
Zn

Zn′

) 1
1−γ

P I
n′

(
p

φ,I
t

)
P I

n

(
p

φ,I
t

)
α γ

1−γ

.

Substituting this expression in Equation (B.17) implies that the ratio of costs of two units
n and n′ are given by

Cnt

Cn′t
=

(
Zn′

Zn

) 1
γ

 P I
n

(
p

φ,I
t

)
P I

n′

(
p

φ,I
t

)
α

×
(

Zn

Zn′

) 1
γ(1−γ)

P I
n′

(
p

φ,I
t

)
P I

n

(
p

φ,I
t

)


α
1−γ

,

=

(
Zn

Zn′

) 1
1−γ

P I
n′

(
p

φ,I
t

)
P I

n

(
p

φ,I
t

)


αγ
1−γ

.

Thus, we find that costs and output are propotional across firms, that is, we have Cnt =

Bt (Wt) ỹnt

(
p

φ,I
t

)
. Moreover, letting the unit-level share of production i in expenditure

on intermediate products be denoted S I
ni

(
p

φ,I
t

)
≡

∂ logP I
n

(
p

φ,I
t

)
∂ log pit

, Equation (B.17) implies

the share of product i in the costs of unit n at time t is given by pφ
itq

φ
it

Cnit
= α S I

ni

(
p

φ,I
t

)
. This

result, when combined with Equation (B.17) implies that each unit’s share of aggregate
costs Ωnt ≡ Cnt

∑n′ Cn′t
only varies as a function of the vector of prices of intermediate inputs

p
φ,I
t .

Together, these results imply that the share of intermediate product i in aggregate
spending on intermediate products is given by

S I
i

(
p

φ,I
t

)
= ∑

n
Ωn

(
p

φ,I
t

)
S I

ni

(
p

φ,I
t

)
,

only as a function of the vector of quality-adjusted products pφ,I
t . This leads to

QI
i

(
p

φ,I
t

)
= α

∑n Cnt

pit
S I

i

(
p

φ,I
t

)
= αBt (Wt)

∑n ỹ
(
p

φ,I
t

)
pit

S I
i

(
p

φ,I
t

)
,

which is the product of a term that only depends on factor prices and a term that only
depends on the prices of intermediate products pφ,I

t , thus leading to our desired result.

Proof for Lemma A.4. Let us start with HDIA and define, for now, σii,τ ≡ ε2
i /ε, so that we
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can rewrite Equation (A.1) as follows

d log si =

(
1 − ∑

j ̸=i
sjσij

) (
d log pj − dφj − d log P

)
+ ∑

j
sjσij

(
d log pj − dφj − d log P

)
,

= ∑
j

[(
1 − ∑

j
sjσij

)
Iij + sjσij

] (
d log pj − dφj − d log P

)
, (B.18)

where, as before, Iij = 1 if i = j and Iij = 0, otherwise. Note that Equation (B.18) holds
for any choice of σii. In particular, the proof here simplifies if we choose σii = εi. Using
Equation (11) for HDIA, we now find

d log si = (1 − εi) (d log piτ − dφiτ − d log Pτ)

+
εi

ε ∑
j

sjε j
(
d log pjτ − dφjτ − d log Pτ

)
,

where we have used the fact that ∑j sjτ
(
d log pjτ − dφjτ − d log Pτ

)
= 0. We can rewrite

this as relationship as

d log pjτ − dφjτ − d log Pτ =
1

1 − εi

(
d log si −

εi

ε
d log B

)
, (B.19)

where we have let d log B ≡ ∑j sjε j
(
d log pjτ − dφjτ − d log Pτ

)
. Substituting Equation

(B.19) in the definition of d log B, we find

d log B = −∑
j

sj
ε j

ε j − 1

(
d log sj −

ε j

ε
d log B

)
,

= −∑
j

sj

(
1 +

1
ε j − 1

)
d log sj + d log B ∑

j
sj

(
1 +

1
ε j − 1

)
ε j

ε
,

= −∑
j

sj
1

ε j − 1
d log sj + d log B

(
1 +

1
ε ∑

j
sj

(
1 +

1
ε j − 1

))
,

= −∑
j

sjµjd log sj + d log B
(

1 +
1 + µ

ε

)
,

=
ε

1 + µ ∑
j

sjµjd log sj.
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Substituting the above expression for d log B in Equation (B.19) gives us

d log pjτ − dφjτ − d log Pτ = − 1
εi − 1

d log si +
1
ε

εi

εi − 1
d log B,

= − 1
εi − 1

d log si +
1
ε

(
1 +

1
εi − 1

)
d log B,

= −µid log si +
1 + µi

1 + µ ∑
j

sjµjd log sj,

leading to the desired result, using again the fact that ∑j sjτ
(
d log pjτ − dφjτ − d log Pτ

)
=

0.
Next we consider HIIA and re-define, this time, σii ≡ 2εi − ε, so that we can again

write Equation (B.18). Using Equation 11 for HIIA, we now find

d log si = ∑
j

[(
1 − ∑

j
sjτσij,τ

)
Iij + sjτσij,τ

] (
d log pjτ − dφjτ − d log Pτ

)
,

= (1 − εi) (d log piτ − dφiτ − d log Pτ)

+ ∑
j

sj
(
εi + ε j − ε

) (
d log pjτ − dφjτ − d log Pτ

)
,

= (1 − εi) (d log piτ − dφiτ − d log Pτ)

+ ∑
j

sjε j
(
d log pjτ − dφjτ − d log Pτ

)
,

where we have used the fact that ∑j sjτ
(
d log pjτ − dφjτ − d log Pτ

)
= 0. We can rewrite

this as relationship as

d log pjτ − dφjτ − d log Pτ =
1

1 − εi
(d log si − d log B) , (B.20)

where we have let d log B ≡ ∑j sjε j
(
d log pjτ − dφjτ − d log Pτ

)
. Substituting Equation

(B.20) in the definition of d log B, we find

d log B = −∑
j

sj
ε j

ε j − 1
(
d log sj − d log B

)
,

= −∑
j

sj

(
1 +

1
ε j − 1

)
d log sj + d log B ∑

j
sj

(
1 +

1
ε j − 1

)
,
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= −∑
j

sj
1

ε j − 1
d log sj + d log B

(
1 + ∑

j
sj

1
ε j − 1

)
,

= −∑
j

sjµjd log sj + d log B (1 + µ) ,

=
1
µ ∑

j
sjµjd log sj.

Substituting the above expression for d log B in Equation (B.20) gives us

d log pjτ − dφjτ − d log Pτ = − 1
εi − 1

d log si +
1
µ

1
εi − 1 ∑

j
sjµjd log sj,

= −µid log si +
µi

µ ∑
j

sjµjd log sj,

leading to the desired result, using again the fact that ∑j sjτ
(
d log pjτ − dφjτ − d log Pτ

)
=

0.
Finally, we consider HIIA and re-define, this time, σii = 1 + (εi−1)2

ε−1 , so that we can
again write Equation (B.18). Using Equation 11 for HSA, we now find

d log si = ∑
j

[(
1 − ∑

j
sjτσij,τ

)
Iij + sjτσij,τ

] (
d log pjτ − dφjτ − d log Pτ

)
,

= − (εi − 1) (d log piτ − dφiτ − d log Pτ)

+ (εi − 1)∑
j

sjτ
ε j − 1
ε − 1

(
d log pjτ − dφjτ − d log Pτ

)
,

= (1 − εi)

{
(d log piτ − dφiτ − d log Pτ)

− 1
ε−1 ∑

j
sjτε j

(
d log pjτ − dφjτ − d log Pτ

) }
,

where we have used the fact that ∑j sjτ
(
d log pjτ − dφjτ − d log Pτ

)
= 0. We can rewrite

this as relationship as

d log pjτ − dφjτ − d log Pτ = − 1
εi − 1

d log si +
1

ε − 1
d log B, (B.21)

where we have let d log B ≡ ∑j sjε j
(
d log pjτ − dφjτ − d log Pτ

)
. Substituting Equation
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(B.21) in the definition of d log B, we find

d log B = −∑
j

sjε j

(
1

ε j − 1
d log sj −

1
ε − 1

d log B

)
,

= −∑
j

sj

(
1 +

1
ε j − 1

)
d log sj +

ε

ε − 1
d log B,

= −∑
j

sjµj d log sj +

(
1 +

1
ε − 1

)
d log B,

= (ε − 1) ∑
j

sjµjd log sj.

Substituting the above expression for d log B in Equation (B.21) gives us

d log pjτ − dφjτ − d log Pτ = − 1
εi − 1

d log si + ∑
j

sjµjd log sj,

= −µid log si + ∑
j

sjµjd log sj,

leading to the desired result, using again the fact that ∑j sjτ
(
d log pjτ − dφjτ − d log Pτ

)
=

0.

Proof for Proposition A.4. We let µi ≡ 1
εi−1 and rely on Equation (A.28), but choose µ∗ in-

stead of µ as the constant to find:A4

Ξ−1
ij,τ = µitIij − ιitsjt

(
µjt − µ∗

t
)

,

where ιit ≡ 1+µit
1+µt

for HDIA, ιit ≡ µit
µt

for HIIA, and ιit ≡ 1 for HSA. We then evaluate each
term in Equation (13) separately.

For the second term in Equation (13), we have

E
ϖt
i

∑
i

∑
j∈I∗t

ϖitΞ−1
ij,t ∆ log s∗jt

 = ∑
i

ϖitµit ∆ log s∗it

− ∑
i

ϖit ∑
j∈I∗t

1
2
(
ıit−1 sjt−1

(
µjt−1 − µ∗

t−1
)
+ ıit sjt

(
µjt − µ∗

t
))

∆ log s∗jt,

= ∑
i

ϖitµit ∆ log s∗it

A4The proof of Lemma A.4 shows that any constant instead of µ also allows us to invert the relationship
between changes in quality-adjusted relative log prices and changes in log expenditure shares.
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− 1
2

(
∑

i
ϖitıit−1

)
Λ∗

t−1 ∑
j∈I∗t

s∗jt−1
(
µjt−1 − µ∗

t−1
)

∆ log s∗jt

− 1
2

(
∑

i
ϖitıit

)
Λ∗

t ∑
j∈I∗t

s∗jt
(
µjt − µ∗

t
)

∆ log s∗jt.

For the third term, we find

∑
i

ϖit ∑
j∈I∗t

(
Ξ−1

ij,t

)
= ∑

i∈Ot

ϖit(µit)

− ∑
i∈Ot

ϖit ∑
j∈I∗t

1
2
(
ıit−1 sjt−1

(
µjt−1 − µ∗

t−1
)
+ ıit sjt

(
µjt − µ∗

t
))

,

= ∑
i

ϖitµit.

For the last term, given that Ot ⊂ I∗t , we find

∑
i

ϖit

 ∑
j∈It\I∗t

Ξ−1
ij,t − ∑

j∈It−1\I∗t

Ξ−1
ij,t−1

 = −∑
i

ϖit ∑
j∈It\I∗t

ιitsjt
(
µjt − µ∗

t
)

+ ∑
i

ϖit ∑
j∈It−1\I∗t

ιit−1sjt−1
(
µjt−1 − µ∗

t−1
)

,

= −
(

∑
i

ϖitιit

)
(1 − Λ∗

t )
(
µ−

t − µ∗
t
)

+

(
∑

i
ϖitιit−1

) (
1 − Λ∗

t−1
) (

µ+
t−1 − µ∗

t−1
)

,

where µ−
t and µ+

t−1 satisfy

µt = Λ∗
t µ∗

t + (1 − Λ∗
t ) µ−

t ,

µt−1 = Λ∗
t−1µ∗

t−1 +
(
1 − Λ∗

t−1
)

µ+
t .

The above relations allow us to rewrite the terms inside the parentheses as

µ−
t − µ∗

t =
1

1 − Λ∗
t
(µt − Λ∗

t µ∗
t )− µ∗

t ,

=
1

1 − Λ∗
t
(µt − µ∗

t ) , (B.22)

Page A36



µ+
t−1 − µ∗

t−1 =
1

1 − Λ∗
t−1

(
µt−1 − Λ∗

t−1µ∗
t−1
)
− µ∗

t−1,

=
1

1 − Λ∗
t−1

(
µt−1 − µ∗

t−1
)

. (B.23)

Together, the above relationships imply

∑
i

ϖit

 ∑
j∈It\I∗t

Ψ−1
ij,t − ∑

j∈It−1\I∗t

Ψ−1
ij,t−1

 = −
(
ιot (µt − µ∗

t )− ιot−1
(
µt−1 − µ∗

t−1
))

.

If we are willing to make assumptions about the asymptotic values of µit, we can also
provide a slightly more accurate approximation. In particular, we have

∑
i∈Ot

∑
j∈It\I∗t

ϖit

∫ t

t−1

Ψ−1
ij,τ

sjτ
dsjτ = −1

2 ∑
i∈Ot

ϖitιit ∑
j∈It\I∗t

(
µjt − µ∗

t
)

sjt,

∑
i∈Ot

∑
j∈It−1\I∗t

ϖit

∫ t

t−1

Ψ−1
ij,τ

sjτ
dsjτ =

1
2 ∑

i∈Ot

ϖitιit ∑
j∈It−1\I∗t

(
µjt − µ∗

t
)

sjt−1,

where we have defined µjt ≡ limp̌jt→∞
1

e( p̌jt)−1
for j ∈ It−1\I∗t and µjt−1 ≡ limp̌jt−1→∞

1
e( p̌jt−1)−1

for j ∈ It\I∗t . This leads to the following result:

∆ log Pt = ∑
i

ϖit∆ log pit + ∑
i

ϖitµit (∆ log s∗iτ + ∆ log Λ∗
t )− ∑

i
Λ∗

t s∗itι
o
t

(
1

εit−1 −
(

1
εit−1

))
∆ log s∗it

− 1
2

ιot

(
Λ†

t ∑
j

s†
jt

(
µjt − µ∗

t

)
− Λ†

t−1 ∑
j

s†
jt−1

(
µjt − µ∗

t

))
+ O

(
δ3
)

, (B.24)

for δ ≡ max
{

maxi∈Ot {|∆ log pit|} , maxi∈I∗t

{∣∣∆ log s∗it
∣∣} , |∆ log Λ∗

t | , maxi/∈I∗t {|∆sit|}
}

.
To derive Equation (A.32), we need to evalue the third term on the right hand side of

Equation (A.32) as

∑
j∈I∗t

∑
i

s∗itΞ
−1
ij,t ∆ log s∗jt = ∑

j∈I∗t

∑
i∈I∗t

Iij
1
2

(
s∗itµit + s∗it−1µit−1

) ∆ log s∗jτ

− ∑
j∈I∗t

∑
i∈I∗t

1
2
(
ıit−1 sjt−1

(
µjt−1 − µ∗

t−1
)
+ ıit sjt

(
µjt − µ∗

t
))

∆ log s∗jt,

= ∑
i∈I∗t

s∗itµit ∆ log s∗iτ
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− 1
2

∑
i∈I∗t

s∗it−1ıit−1

Λ∗
t−1 ∑

j∈I∗t

s∗jt−1
(
µjt−1 − µ∗

t−1
)

∆ log s∗jt

− 1
2

∑
i∈I∗t

s∗itıit

Λ∗
t ∑

j∈I∗t

s∗jt
(
µjt − µ∗

t
)

∆ log s∗jt,

where in the last equality, we have used the fact that s∗itµit = s∗it · µit +
1
4 ∆s∗it · ∆µit. Using

a similar argument, we can also simplify the fourth term as

∑
j∈I∗t

∑
i

s∗itΞ
−1
ij,t = ∑

j∈I∗t

∑
i∈I∗t

Iij
1
2

(
s∗itµit + s∗it−1µit−1

)
− ∑

j∈I∗t
∑

i∈I∗t

1
2
(
ıit−1 sjt−1

(
µjt−1 − µ∗

t−1
)
+ ıit sjt

(
µjt − µ∗

t
))

,

= ∑
i

s∗itµit.

For the last term, we find

∑
i

s∗it ∑
j∈It\I∗t

Ψ−1
ij,t − ∑

i
s∗it−1 ∑

j∈It−1\I∗t

Ψ−1
ij,t−1 = −∑

i
s∗it ∑

j∈It\I∗t

ιitsjt
(
µjt − µ∗

t
)

+ ∑
i

s∗it−1 ∑
j∈It−1\I∗t

ιit−1sjt−1
(
µjt−1 − µ∗

t−1
)

,

= −ι∗t (1 − Λ∗
t )
(
µ−

t − µ∗
t
)

+ ι∗t−1
(
1 − Λ∗

t−1
) (

µ+
t−1 − µ∗

t−1
)

,

= −ι∗t (µt − µ∗
t ) + ι∗t−1

(
µt−1 − µ∗

t−1
)

,

where we have again used Equations (B.22) and (B.23).
The result for the case of Equation (A.30) also follows from the above result.

B.2 Derivations for the Kimball Aggregators

B.2.1 Derivations for Kimball Specifications

Below, we derive the Kimball functions corresponding to each of the three cases discussed
in Section 4.2. We have that ẽ( p̌) ≡ −d log K′(q̌)/d log q̌

∣∣
q̌=d( p̌)). This allows us to inte-

grate the function E (·) twice to arrive at K (·).
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Klenow-Willis In this case, we have:

ψ (log q̌) ≡ log K′ (q̌) = − 1
σ

∫ log q̌

−∞
eθvdv,

= − 1
σθ

q̌θ,

for any constant ξ. Integrating this expression again, we find:

K (q̌) = −
∫ ∞

log q̌
e−vθ/σθdv,

= (σθ)
1
θ

1
θ

Γ
(

1
θ

,
1

σθ
q̌θ

)
,

where Γ (·, ·) is the incomplete Gamma function.

Finite-Infinite Limits (FIL) In this case, we have:

ψ (log q̌) ≡ log K′ (q̌) = −
∫ log q̌

−∞

dv
σ + (σo − σ) e−θv ,

= − 1
σ

log q̌ − 1
σθ

log
(

σ

σo − σ
+ q̌−θ

)
.

Next, we integrate to find the expression for K (·):

K (q̌) =
∫ log q̌

0

(
σvθ + σo − σ

σo − σ

)− 1
σθ

dv,

= q̌ · 2F1

(
1
θ

,
1

σθ
; 1 +

1
θ

;− σ

σo − σ
q̌θ

)
,

where 2F1 is the hypergeometric function. The functional form above implies the follow-
ing expression for log demand:

d (log p̌) ≡ ψ−1 (log p̌) ,

=
1
θ

log
[

σo − σ

σ

(
eθσ(ξ−log p̌) − 1

)]
.

In this case, there exists a finite chocke price for any product, above which demand
drops to zero.
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Finite-Finite Limits (FFL) In this case, we have:

ψ (log q̌) ≡ logK′ (q̌) = −
∫ log q̌

−∞

[
1
σo

+

(
1
σ
− 1

σo

)
eθo eθv

1 + eθo eθv

]
dv,

= − 1
σo

log q̌ −
(

1
σ
− 1

σo

)
1
θ

log
(

1 + eθo q̌θ
)

.

Finally, we integrate to find the expression for K (·):

K (q̌) =
∫ q̌

0
v−

1
σo

(
1 + eθo vθ

)−( 1
σ−

1
σo )

1
θ dv,

=
σo

σo − 1
q̌1− 1

σo · 2F1

((
1 − 1

σo

)
1
θ

,
(

1
σ
− 1

σo

)
1
θ

; 1 +
(

1
σo

+ 1
)

1
θ

;−eθo q̌θ

)
,

where 2F1 is the hypergeometric function.

B.2.2 Inverting Kimball Demand

We implement the demand inversion through the dual problem, meaning that we map the
vector of observed expenditure shares st to a corresponding vector of normalized quan-
tities q̌t. Formally, we solve for the function d (πi (·; ς) ; ς) corresponding to the definition
(26) and (27) with K′(q̌; ς) = d−1(q̌; ς) and q̌ = d ( p̌; ς).

To invert the demand, for any collection of (pt, st) at time t, we need to solve for the
vector (log q̌it)i, such that:

log sit = log q̌it + ψ (log q̌it)− log

[
∑
j∈Vt

exp
(
log q̌jt + ψ

(
log q̌jt

))]
, ∀i ∈ Vt, (B.25)

k (1) = log

[
∑

i∈Vt

exp (k (log q̌it))

]
, (B.26)

where k (·) ≡ log K (exp (·)) and ψ (·) ≡ log K′ (exp (·)). We can rewrite Equation (B.25)
as (assuming O ≡ {o}):

log
(

sit

sot

)
= log

(
q̌it

q̌ot

)
+ ψ (log q̌it)− ψ (log q̌ot) , ∀i ∈ Vt. (B.27)

Using the identity

k′ (log q̌) = exp (log q̌ + ψ (log q̌)− k (log q̌)) ,
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we can substitute Equation (B.27) in Equation (B.26), we find:

k (1) = log

[
∑

i∈Vt

exp (k (log q̌it))

]
,

= log

[
∑

i∈Vt

exp
(
log q̌it + ψ (log q̌it)− k′ (log q̌it)

)]
,

= log

[
∑

i∈Vt

exp
(

log q̌ot + ψ (log q̌ot) + log
(

sit

sot

)
− k′ (log q̌it)

)]
,

= log q̌ot + ψ (log q̌ot) + log

[
∑

i∈Vt

sit

sot
exp

(
−k′ (log q̌it)

)]
,

= k (log q̌ot) + log

[
∑

i∈Vt

sit

sot
exp

(
k′ (log qot)− k′ (log q̌it)

)]
. (B.28)

We use an iterative approach: starting with some initial guess for q̌ot, we iterate between
updating values of q̌it for i ̸= o from Equation (B.27) and updating the value of q̌ot from
Equation (B.28).

C Simulation Exercise

In this appendix, we discuss a Monte Carlo simulation exercise to examine the behavior
of our identification strategy for demand estimation.

C.1 Data Generating Process

We use the following data generating process to create data on prices and expenditure
shares (pt, st)

T−1
t=0 . First, we generate data on the vector of cost shifters wt, quality φt, and

prices pt using the following dynamic AR(1) Markov model

log wit = ρw log wit + (1 − ρw) log wi + κw vw
it ,

φit = ρ φit−1 + (1 − ρ) φi + κφ vφ
it,

log pit = log wit + γφ φit + κp vp
it,

along with a similar process for the total expenditure

log yt = ρy log yt−1 + (1 − ρ) y + κy vy
it,
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Figure C.1: Montecarlo Simulation - Kimball Elasticities

Note:

where ρw, ρ, and ρy are the persistence paramters for the cost shifter, quality, and total
expenditure, where log wi, φi, and log y are the long-run values of the mean logarithm of
the cost shifter, quality, and the logarithm of the total expenditure, and where vw

it , vφ
it, vp

it,
and vy

it are normally distributed i.i.d. shocks to the logarithm of the cost shifter, quality,
the logarithm of price, and the logarithm of total expenditure, with κw, κφ, κp, and κy

denoting the corresponding standard deviations.
Note that the above process features a correlation between the quality (demand) shocks

through E [φit log pit] = γφE
[
φ2

it
]
.

Given the vector of prices and qualities (pt,φt) at each point in time, we then compute
the expenditure shares for each good sit = s̃i (p

φ) following Equation (9) with the choice
of Finite-Finite-Limit (FFL) Kimball aggregator defined in Equations (26), (27), and (A.36).

C.2 Estimation Results

D Details on the Application to the Price Index of US Im-

ports

D.1 US Data Construction

We rely on several datasets from the Bureau of Economics Analysis (BEA), the U.S. Census
Bureau, and the National Bureau of Economic Research (NBER). The first datasets are the
HS-level U.S. import and export data from 1989 to 2018. We construct domestic absorp-
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Figure C.2: Montecarlo Simulation - CES Elasticities

Note:

tion at the 5-digit NAICS level by matching the trade flow data to domestic production
data from the NBER-CES Manufacturing Industry Database and Gross Output from the
BEA. Our analysis covers 156 time-consistent industries for manufacturing, farming and
mining sectors spanning from 1989 to 2018. We verify the robustness of our data con-
struction procedure by comparing our data to the more aggregate industry definitions
from the BEA annual Input-Output.

US Imports and Exports We use the U.S. import and export data at the level of 10-
digit codes of the Harmonized System (henceforth HS10) over the period 1989-2018 from
the U.S. Census Bureau and maintained by Peter K. Schott (Schott, 2008).A5 The data
provide information on HS-country-year import and export trade flows for the U.S. We
use General Import and Total Export to measure the value of goods traded for imports
and exports, respectively, and the primary quantity to measure the physical amount of
goods traded. We use FOB import prices and FAS export prices to be consistent with the
price definitions used by the U.S. Bureau of Labor Statistics (BLS) in the creation of the
import and export price indices. We drop all import and export flows that report negative
or missing value and quantity.

To map the trade data to the data on domestic sales, we follow Amiti and Heise
(2021) and construct our concordance from time-consistent HS10 to time-consistent 5-
digit NAICS classification codes (2012 vintage). For both imports and exports, we first
use the most updated version of the Pierce and Schott (2012) algorithm to create time-

A5Data are available at https://faculty.som.yale.edu/peterschott/international-trade-data/.
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consistent HS10 codes.A6 This allows us to map and match obsolete and new HS10
codes over time and create combined HS10 codes. Next, we map the HS10 codes to
time-consistent 5-digit NAICS using the concordances developed by Pierce and Schott
(2012) and Amiti and Heise (2021).A7 Since both concordance tables are updated un-
til 2012, we manually adjust revisions over time in the HS10 and inconsistent mappings
from HS10 to NAICS. There are about 100 problematic HS10 codes that map into different
5-digit NAICS codes. We manually check each case and make adjustment as follows: i)
we assign each HS10 code to only one NAICS code after inspecting the code description,
whenever possible; ii) in other cases, we avoid making many arbitrary assignments when
a large number of HS10 codes map to the same set of NAICS code and decide to directly
combine multiple NAICS codes; iii) in an handful of cases, we remove HS10 codes from a
combined HS10 codes created using the Pierce and Schott (2012) algorithm and assign it
to a more appropriate group after inspecting the code description. Following these steps,
we obtain approximately 11,000 HS10 import and export codes mapped to one of 193
time-consistent 5-digit NAICS codes, which we use for our analysis.

Lastly, we perform additional cleaning on the import data before estimation. Specifi-
cally, we define within-industry variety labels as the country of origin-NAICS pairs and
drop observations that exhibit change in unit value above the 99th percentile and below
the 1st percentile within each NAICS. We also drop observations with reported quantity
of one or below.

Domestic Production and Absorption We use the NBER-CES Manufacturing Industry
Database and the BEA Gross Output by industry to measure domestic productcion and
construct domestic absorption. The NBER-CES Manufacturing Industry Database dataset
contains annual data on shipments and prices from the United States manufacturing sec-
tor for the period from 1958 to 2018 at the 6-digit 2012 NAICS level (Becker et al., 2021).A8

We use the variable vship (total value of shipment), constructed using data from the Cen-
sus Bureau’s Annual Survey of Manufactures (ASM) and Census of Manufactures (CMF),
to measure U.S. firms’ total sales. The variable piship, constructed using detailed deflators
from BEA and/or BLS, is used to measure domestic price changes at the industry level.A9

Data are aggregated at the 5-digit NAICS level to match the level of aggregation of import

A6We use version 2019.07.12 of the algorithm. The concordance is available from Peter Schott’s website
(https://sompks4.github.io/sub_data.html).

A7The concordance by Amiti and Heise (2021) is available at https://www.sebastianheise.com.
A8The dataset is available at https://www.nber.org/research/data/nber-ces-manufacturing-industry-

database.
A9Additional details on NBER-CES construction can be found at

https://data.nber.org//nberces/nberces5818v1/nberces5818v1_technical_notes_Mar2021.pdf.

Page A44

https://sompks4.github.io/sub_data.html
https://www.sebastianheise.com.
https://www.nber.org/research/data/nber-ces-manufacturing-industry-database
https://www.nber.org/research/data/nber-ces-manufacturing-industry-database
https://data.nber.org//nberces/nberces5818v1/nberces5818v1_technical_notes_Mar2021.pdf


and export trade flows. We use a standard Tornqvist formula to aggregate 6-digit price
indices into 5-digit ones, where shares are computed using total shipment values.

The NBER-CES database provides information only on manufacturing industries (NAICS
31-33). Beyond this sector, farming and mining industries also exhibit positive trade
flows. Thus, we complement the information on the manufacturing sectors using BEA
data for farming and mining industries. Specifically, we use the annual Gross Output
measured by the BEA and the corresponding price index.A10 BEA data are reported at
the “Summary” level, forcing us to aggregate the 5-digit NAICS farming and mining in-
dustries into more aggregate industries.A11

We then compute the domestic sales of U.S. firms in each industry by subtracting
exports from total shipments. We also compute domestic absorption as total shipments
minus exports plus imports.A12 As expected the latter is always positive, while the former
exhibits a few negative values in selected industries that have experienced an increasingly
negative balance of paymennt surplus such as Apparel, Iron and Steel, and Computer
Manufacturing.

Aggregation and Comparison to Input-Output Data We show that the data we con-
struct are highly correlated with official industry-level statistics from the BEA Input-
Output tables. We use the annual Summary-level Use table at producer’s prices from
the BEA Input-Output accounts and aggregate our data on imports and exports, domes-
tic production and absorption at the same level of aggregation.A13 Figure D.1 shows
that the data we construct are highly correlated with official national accounts from the
BEA Input-Output tables. Specifically, the correlation between our measures of sectoral
(Summary-level) domestic production, imports and exports with the BEA counterparts
are 98%, 98%, and 93%, respectively.A14 Discrepancies in domestic production measures

A10Data are available on the BEA website at https://apps.bea.gov/iTable/?reqid=147&step=2.
A11The 5-digit NAICS industries starting with 111 and 112 are aggregated into a unique Farming industry.

Similarly, NAICS starting with 113, 114 and 115 are grouped into a unique Forestry and Fishing industry.
Lastly, all mining activies other than oil and gas (NAICS starting 212) are aggregated into a unique industry.

A12We adjust our measure of domestic sales of U.S. firms for the presence of re-exports in order not to
underestimate it. We measure U.S. exports using Domestic Exports as defined by the U.S. Census Bureau
(Total Export minus Foreign Exports). Domestic absorption is not affect by this adjustment because re-
exports also enters in imports, thus, not affecting the net exports.

A13BEA Input-Output accounts can be found at https://www.bea.gov/industry/input-output-accounts-
data#supplemental-estimate-tables. Concordance between the BEA Summary-level and NAICS classifica-
tions is constructed by the BEA.

A14We also construct exports and imports from the U.S. Census data excluding re-exports. Excluding re-
exports means dropping the item called “Foreign Export” and focusing only “Domestic Exports.” On the
imports side, we measure imports with “Imports for Consumption” only, rather than “General Imports.”
The correlation with BEA accounts does not change when we exclude re-exports. Figure D.1 also shows the
strong correlation between industry-level re-exports data from the U.S. Census Bureau (i.e. Foreign Export)
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shrink if we further aggregate sectors that are close in their description, suggesting that
the differences are due to the allocation of output and shipments in similar sectors.A15

Similarly, discrepancies between our U.S. Census based measures of imports and exports
and the BEA Input-Output accounts is most likely due to adjustments that the latter per-
forms on the U.S. Census data. For instance, the BEA measures of imports tend to be
larger than our U.S. Census based because the former are reported at foreign port value
(i.e. FOB) while BEA uses domestic port value (approximately CIF) to evaluate imports.
BEA exports are also larger than U.S. Census data because of statistical adjustments per-
formed by the BEA, such as adding net export under merchanting, defined as the pur-
chase of goods by a resident from a nonresident combined with the subsequent resale of
the same goods to another nonresident without the goods being present in the U.S., and
thus, not recorded by the U.S. Customs.A16,A17

D.2 Further Examination of CES Estimates and Comparison to Origi-

nal Broda and Weinstein (2006)

Data and Estimation We use product-level data on US imports from 1989 to 2006 com-
piled originally by Feenstra et al. (2002) and used in Broda and Weinstein (2006). These
data record US imports at the HS10 level, reporting also the corresponding SITC classifi-
cation. We define a good to be an HS10 category and we follow the standard approach
to identify varieties with the country of origin, e.g., an origin country-HS10 pair. A vari-
ety’s unit value is defined as the sum of the value, total duties, and transportation costs
divided by the import quantity. To minimize the effects of noise in the data, we trim the
data as follows: we exclude all varieties that report a quantity of one unit or less than the
5th percentile within each HS10 product category; we remove varieties with an annual
unit value increase that fall below the 5th percentile or above the 95th percentile within
each HS10 product category.

We estimate the CES elasticity of substitution across product varieties at the HS10

and BEA (about 98%). The BEA data on re-exports are only available from 2015.
A15This is the case in Apparel and Textile, Oil extraction and Refinery, Computers and Electric equipment,

and Paper and Printing.
A16BEA collects information on merchanting trade in its Quarterly Survey of Transactions and provides

statistics at aggregate level, not allowing us to gauge its relevance at the NAICS level.
A17The largest discrepancy concerns the exports of the Aircraft industry, which have been sup-

pressed by the U.S. Census and aggregated in a manner that prevents disclosure of confidential in-
formation. More information on the adjustments can be found here: the explanatory notes to the
FT900 release (https://www.census.gov/foreign-trade/Press-Release/current_press_release/ft900.pdf)
and the BEA IEA and I-O manuals (https://www.bea.gov/international/concepts_methods.htm,
https://www.bea.gov/resources/methodologies/concepts-methods-io-accounts).
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Figure D.1: Comparison to BEA I-O Data
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Note: The top right panel compares the NBER Total Shipments and the BEA Gross Output measures to the Total Output measure
from the BEA I-O. Unit of observation is a sector-year, where sectors are defined at the I-O Summary-level. NBER Total Shipments
are aggregated accordingly. The top left, bottom right, and bottom left panels compare Total Exports, Total Import and Reexports,
respectively, from the U.S. Census Data to the corresponding measures from the BEA I-O. Census Data are aggregated to match the
I-O Summary-level definitions. Both domestic and foreign exports, and general imports and imports for consumption are considered.
BEA data on reexports are only available from 2015.

level, together with the 5, 4, and 3-digit SITC levels of aggregation (SITC5, SITC4 and
SITC3, respectively). The SITC4 level allows us to map our data to the Rauch product
classification (Rauch, 1999). We use our Dynamic Panel (DP) approach using the moment
condition in Equation (20) with double lagged (log) prices and market shares as instru-
ments. For the purpose of estimation, we use any continuously imported variety over
the period from 1989 to 2006 within each product classification as the baseline product
to infer quality in Equation (15). We compare our estimates against those found using
the conventional Feenstra (1994) and Broda and Weinstein (2006) estimator (henceforth
FBW), and as well as the more recent Limited Information Maximum Likelihood estima-
tion approach (Soderbery, 2015b, henceforth LIML).

Price Elasticities Across Different Levels of Aggregation Table D.1 reports the mean
and the median of the estimated elasticities using the DP approach for three different lev-
els of product aggregation. As expected, we find lower elasticities when we aggregate
products in broader categories. The average elasticity is 4.5 at the SITC3 level and it in-
creases to 5.6 at the HS10 level. Even if the differences appear small, we can statistically
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Table D.1: CES Elasticities based on the DP Approach at Different Levels of Aggregation

HS10 SITC5 SITC3

Mean 5.65 5.09 4.49
(SE) (0.09) (0.21) (0.40)
Median 3.37 3.13 2.87
(SE) (0.05) (0.10) (0.23)
N 8508 1296 147
T-statistics 2.493 2.836
Pearson χ2 p-value 0.043 0.025

Note: Mean and median of the elasticities of substitution estimated with the DP approach for the products defined at the HS10, SITC5
and SITC3 levels of aggregation. Only feasible estimates are reported. Values above 130 are censored. Standard errors for each
statistics are bootstrapped. T-statistics refer to a t-test for differences in mean with respect to the HS10 level; p-values for Pearson
difference in median tests with respect to the HS10 level.

reject the null hypothesis that the mean elasticities are the same across all level of aggre-
gations. Note also that the median elasticities of substitution exhibit the same qualitative
pattern, as their values increase from 2.9 to 3.4. The median estimates at more aggregate
levels (three and five digit) statistically differ from the most disaggregated level.A18

Comparison to Broda and Weinstein (2006) and Soderbery, 2015b Table D.2 compares
the price elasticities estimated by the different strategies across different product clas-
sifications. First, note that the magnitude of the estimated price elasticities falls as we
estimate them across more aggregated varieties, as varieties become less substitutable at
these more aggregated levels. Comparing the magnitudes across different methods, we
find that the elasticities estimated using DP are larger compared to those obtained using
the FBW or LIML methods, in both mean and median terms, at all levels of aggregation.
For instance, at the three-digit level, the mean elasticity for DP is 4.5, 50% greater than
the number for FBW and more than twice that for LIML. Similarly, the median elasticity
for DP is 2.8, while the value is 2.3 and 1.2 for the conventional methods FBW and LIML,
respectively. We can easily reject the hypothesis that the means and the medians are the
same. Figure D.8 in Appendix D.4 shows the strong correlation among the estimates
found by the three methods.

Price Elasticities Across Different Rauch (1999) Product Classes Intuitively, we expect
the magnitude of the price elasticities to be higher among more homogenous goods com-
pared to more differentiated ones, since these homogenous goods should be more substi-

A18In contrast to the case of the mean estimates, we cannot statistically reject the hypothesis that the
medians are the same at the SITC3 and SITC5 level.
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Table D.2: Comparison between DP, FBW and LIML

HS 10 SITC 5 SITC 3
DP BW LIML DP BW LIML DP BW LIML

Mean 5.70 4.64 4.50 5.09 3.44 3.21 4.49 2.97 1.70
(SE) (0.15) (0.09) (0.11) (0.23) (0.13) (0.15) (0.45) (0.39) (0.11)
Median 3.35 2.74 2.10 3.08 2.43 1.65 2.79 2.29 1.23
(SE) (0.05) (0.02) (0.02) (0.10) (0.04) (0.04) (0.25) (0.08) (0.03)
T-statistics 7.89 8.08 6.40 6.91 2.56 6.06
Pearson χ2 p-value 0.00 0.00 0.00 0.00 0.03 0.00
N 7283 7283 7283 1140 1140 1140 127 127 127

Note: Mean and median of the elasticities of substitution estimated with the DP, FBW and LIML methods for the HS10, SITC5 and
SITC3 levels of aggregation. Only feasible estimates for common products are reported. Values above 130 are censored. Standard
errors for each statistics are bootstrapped. For each level of aggregation, T-statistics refer to a t-test for differences in mean with
respect to DP; p-values for Pearson difference in median tests with respect to DP.

Figure D.2: DP Elasticities and Rauch Conservative Classification

Note: The left panel displays the mean and the median of the elasticities of substitution estimated with the DP approach for each
category of the Rauch Conservative Classification at the SITC4 level of aggregation. The right panel shows the correlation between
the DP and FBW estimates for each category of the Rauch Conservative Classification at the SITC4 level of aggregation.

tutable (Broda and Weinstein, 2006). We use the Rauch (1999) classification to distinguish
products at the SITC4 level into three categories: commodities, referenced priced, and
differentiated goods. Rauch (1999) provides two distinct classifications, “Liberal” and
“Conservative”, that only differ in a few products that can be classified in multiple ways.
The left panel of Figure D.2 shows both the mean and the median elasticity for each Rauch
Conservative category. Both these statistics are ranked in increasing order between com-
modities, referenced priced, and differentiated products, as expected. We can reject the
hypothesis that the combined set of commodities and referenced priced goods have the
same mean or median than differentiated products.A19 Table D.3 reports the correspond-
ing values and their standard errors for Figure D.2 and show that qualitative results holds
also for the Liberal version of the classification.

In addition, again using the classification proposed by Rauch (1999), we can show

A19We statistically test the difference between differentiated products and the remaining categories pooled
together. Differences are not statistically significant if the two categories are considered individually.
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that the quality bias in the conventional estimates is stronger among more differentiated
products. Intuitively, quality differentiation is less likely among homogeneous goods,
suggesting that the DP estimates in this case should on average be closer to, and more
correlated with, the conventional estimates. Consistently with this intuition, the right
panel of Figure D.2 shows that the correlation between DP and FBW is stronger for com-
modities and the average difference between the two sets of estimates is smaller. As we
consider less homogenous categories, referenced priced and differentiated products, the
average quality bias increases while the correlation decreases.A20 Figure D.3 shows that
the qualitative pattern is robust to how products are grouped between homogenous and
differentiated.

Table D.3: DP Estimates: Rauch Classifications

Commodity Reference Priced Differentiated
Mean 5.75 4.87 4.50
(SE) (0.86) (0.42) (0.25)
Median 3.27 3.13 2.83
(SE) (0.69) (0.18) (0.18)
N 50 168 317

Commodity Reference Priced Differentiated
Mean 5.28 4.77 4.58
(SE) (0.63) (0.42) (0.27)
Median 3.24 3.10 2.82
(SE) (0.37) (0.18) (0.21)
N 75 162 298

Note: For each category of the Rauch Classification (commodity, reference priced and differentiated), the tables report the mean and
the median CES elasticity estimated using the DP approach at the SITC4 level. The left panel refers to the Conservative version of the
classification (corresponding to Figure D.2 in the main text) while the right one to the Liberal version. It can be show that differences
in mean and median are statistically significant at standard levels if the more homogeneous categories (commodities and reference
priced) are pooled together and compared to differentiated products.

A20The average difference between group captures the average quality bias and is represented by the in-
tercept of a linear regression (fitting line). The slope would capture instead the correlation across estimates.
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Figure D.3: Correlation DP and FBW, Different Pooling of Rauch Categories

Note: The figure shows the correlation between the estimated elasticities using the DP and FBW methods at the SITC4 level using
alternative breakdowns across products. Conservative Rauch classification is used. In the left panel, homogeneous products are
defined as commodities only while, in the right panel, they include commodieties and reference priced goods.

D.3 Further Results on Price and Quality Decomposition

D.3.1 Bias in Inferred Price Index: CES vs. Kimball

We can analyse the implications of the bias in elasticity estimation under the CES model
for the construction of price indices. Equation (A.33) derived from Proposition A.4 in
Appendix A.1.3 provides a decomposition of the gap between what Kimball and CES
demand systems predict about the change in the aggregate price index. This gap is the
sum of two terms: the gap between the mean of the love of variety indices across base
products and the one implied by the CES model, and the contribution of heterogeneity in
the matrix of cross-product elasticities of substitution, which is absent in the CES model.

Figure D.4 shows the cumulative gap between Kimaball and CES import price in-
dices, and its decomposition into the two components based on Equation (A.33). The
contribution of the second term, the heterogeneity in cross-product elasticity, is negative
and explains more than 100% of the gap. The reason is the shift of expenditure shares
within the common set of products away from those with higher love-of-variety indices.
This negative covariance lowers the price index for the consumer, but cannot be captured
in the CES model because cross-product elasticities are identical. The contribution of the
first term, the gap in mean elasticity, is instead positive, partially offsetting the contribu-
tion of the heterogeneity in cross-product elasticity. Since the market share of the base
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Figure D.4: Decomposition of the Gap in the Inferred Price Index - Kimball vs CES

Note: The figure plots the decomposition of the gap between the inferred import price index under Kimball and that under CES. The
solid red line represents the estimated difference between the import price index under Kimball and under CES. Import price indices
are constructed according to Proposition A.4. The dashed black line represents the approximation of the gap according Equation
(A.33). The approximation is the sum of two components: the gap in mean elasticity (dotted blue line), and the heterogeneity in
cross-product elasticities (dashed blue line).

products, i.e. the U.S. variety, is falling over time, the key reason for the gap in mean
elasticity being positive is simply that the estimated elasticity under Kimball (for the base
products) is lower than the estimated CES elasticity. The dashed black line shows the sum
of all the two terms in the approximation, is fairly close to the overall gap implied by the
estimated Kimball and CES specifications (solid red line).

D.3.2 Quality Decomposition across Sectors

Figure D.5: Decomposition of Quality across Sectors

Note: The left panel plot the contribution of quality across industries in the Kimball model relative to the aggregate quality improve-
ment. The quality contribution is computed using the inferred quality from the Kimball specification and constructing a Tornqvist
index of quality changes at the sectoral and aggregate level. The right panel plot the ratio between the import price index and the
producer price index for the Computer and Peripheral Equipment sector (NAICS 3341). The producer price index is from the BLS.
The red line uses the official import price index from BLS, while the green line uses the import price index adjusted for the inferred
quality from the Kimball specification.
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Figure D.6: Decomposition of Quality across Countries

Note: The left panel decomposes the contribution of quality across countries in the Kimball model. The dashed line shows the price
component of the aggregate import price index. The solid line shows the price component together with the quality component of
the aggregate import price index. The quality contribution is computed using the inferred quality from the Kimball specification.
Price indices and their decomposition are constructed from Proposition 2 and Equation (25). The difference between these two lines
quantifies the role of quality changes and is decomposed into the role of Chinese varieties (green area), OECD varieties (purple area)
and all other varieties pooled together (OECD area). The right panel shows the evolution of the (expenditure weighted) average
quality of each (group of) exporter(s), China, OECD economies and rest of the world. Quality of imported varieties is expressed
relative to the quality of the U.S. variety.

D.3.3 Quality Decomposition across Exporters

Figure D.6 shows the evolution of the expenditure-weighted quality for each (group of )
exporter(s), China, OECD economies and all other countries. Recall that the quality of im-
ported varieties is relative to the quality of the U.S. variety, which is used as base product.
The (expenditure-weighted) average quality of Chinese varieties has increased since 1989
relative to the U.S. quality, which is normalized to zero over the entire time period. Notice
also that the annual increase in quality is larger after China joined the WTO in 2001, sug-
gesting that the trade liberalization shock boosted the sophistication process even more.
This supports the extensive evidence that Chinese goods have undergone a sophistica-
tion process, catching up with more advanced economies and largely contributing to the
aggregate quality improvement of U.S. imports.

Table D.4 shows that import quality has doubled over the time period from 1989 to
2018, increasing by almost 100%. This increase is exclusively driven by a rise in qual-
ity within each (group of) exporter(s) while compositional changes between exporters
partially offset the within forces. This is consistent with the fact that Chinese products
gained market share over the time period but still have lower quality compared to other
exporters, even if they are catching up with the frontier.
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D.3.4 Gains from Variety

We can use Proposition A.4 to account for the contribution of new varieties to the changes
in the aggregate import price index. At the level of disaggregation considered in our data
(5-digit NAICS codes), we find that adjusting for this margin makes a negligible impact
on the aggregate price indices. Improved product quality still constitutes the major driver
of change in import prices. In fact, we find the overall impact of new varieties to be in the
direction of raising prices. Over the period 1989-2018, the aggregate import price index
increased by 0.3% under Kimball and 0.06% under CES, respectively, due to the exit of
varieties. Figure D.7 shows that the distribution of Feenstra’s λ ratios at the sector-year
level is highly concentrated around the value of one. This is due to the aggregate nature
of the dataset which defines sectors at the 5-digit NAICS level and varieties at level of the
country of origin, limiting the scope of the variety channel.

Table D.4: Between and Within Decomposition

∆φ ∆ within ∆ between
Full Sample 0.900 1.207 -0.306
Before 2001 0.477 0.657 -0.180
After 2001 0.423 0.549 -0.126

Note: The Table shows a decomposition of the growth in aggregate product quality between and within exporters. We consider China,
OECD economies and all the other exporters pool together. For each exporter, we compute the aggregate product quality as the
expenditure-weighted average across varieties.
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Figure D.7: Feenstra’s Lambda Ratio

Note: The figure shows the histogram of the sector-year Feenstra’s Λ ratios. The Λ ratio is computed as λt =
Λ⋆

t
Λ⋆

t−1
, where Λ⋆ is the

total expenditure share of the continuing set.

D.4 Additional Tables and Figures

Figure D.8: Correlation between DP and FBW or LIML Estimates, HS10 level

Note: The figure shows the binscatter plot of the relationship between the estimated elasticities using the DP approach and conven-
tional methods like FBW (right panel) and LIML (left panel). The figures refers to the set of estimates at the HS10 level. Elasticities are
censored at 10.
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Figure D.9: CES - Kimball Elasticity

1.5
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Average Kimball DP (Expenditure Weighted) Kimball DP

Note: The figure shows the entire set of Kimball demand elasticities as defined in Equation (12) of each variety-time pair as a function
of the (log) quantity for the motor vehicle parts manufacturing industry, NAICS number 33639 (grey dots). The dot orange line
represents the expenditure-weighted mean Kimball elasticity, while the dash red line represents the average Kimball elasticity. The
dash blue line represents the CES estimated elasticity for the sector.

Table D.5: Kimball Parameters

Lower bound σ Upper bound σ θ
Mean 2.36 245.7 6.95

(0.23) (33.1) (3.08)
Median 1.15 7.34 0.33

(0.16) (1.38) (0.040)
25th percentile 1.01 3.45 0.15
75th percentile 2.53 231.6 1.30

Note: The table displays the mean, the median, the 25th and the 75th percentile across all 5-digit NAICS industries, with the corre-
sponding bootstrapped standard errors, of the estimated parameters of the Finite-Finite Kimball specification.
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Table D.6: CES and Kimball Own-Price Elasticities

Kimball - DP CES - DP CES - FBW
Mean 17.0 6.21 3.35

(0.120) (0.009) (0.005)
Median 4.69 4.21 2.56

(0.023) (0.031) (0.018)
Weighted Mean 1.26 1.96 1.57

(0.005) (0.005) (0.005)
5th percentile 1.72 1.68 1.64
25th percentile 3.03 2.89 2.07
75th percentile 9.10 7.32 3.63
95th percentile 48.5 17.3 6.54

Note: The table reports the mean, median, the expenditure-weighted average, and the 5th, 25th, 75th and 95th percentiles of the
distribution of own-price elasticities for both the Kimball and CES specifications. For the Kimball specification, we can compute the
elasticity for each variety at each moment in time while, in the CES case, each variety-time pair is associated with the corresponding
sectoral CES elasticity. For the CES case, we report the DP and the BW estimates. Standard errors are bootstrapped.

Figure D.10: Comparison with BLS Import Price Index

Note: The figure plots the year-to-year change in the BLS Import Price Index and a the price component of the aggregate import price
constructed using Proposition A.4.
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Figure D.11: Kimball Own-Price Elasticities and Implied Quality
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Note: The left panel plots the binscattered relationship between (log) expenditure share of each variety-time observation and the
inferred quality. The panel in the center plots the binscattered relationship between the Kimball own-price elasticity and the (log)
expenditure share. The right panel directly plots the relationship between the inferred product quality and the Kimball own-price
elasticity. In each panel, we use variety fixed effects and cluster the standard errors at the industry level.

Figure D.12: Price Index, Decomposition of Quality across Countries: CES case

Note: The dashed line figure shows the price component of the aggregate import price index. The solid line shows the price component
and the quality component of the aggregate import price index. The quality contribution is computed using the inferred quality from
the CES specification. The difference between these two lines quantifies the role of product quality change and is decomposed into
the role of Chinese varieties (green area), OECD varieties (purple area) and all other varieties pooled together (orange area).
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E Details on the Validation using the US Auto Data

E.1 Data

Table E.1: Summary Statistics

Mean Std. Dev. Min Max
Sales 59106.19 86938.79 10.00 891482.00
Price 36.05 17.13 11.14 99.99
Miles/Gallon 20.94 6.58 10.00 50.00
Horsepower 192.18 83.88 44.00 645.00
Height 60.95 8.41 43.50 107.50
Footprint 13392.63 1968.92 6514.54 21821.86
Curbweight 3561.21 897.77 1113.00 8550.00
US Brand 0.44 0.50 0.00 1.00
Luxury 0.30 0.46 0.00 1.00
Electric 0.02 0.13 0.00 1.00
Sport 0.11 0.31 0.00 1.00
SUV 0.23 0.42 0.00 1.00
Truck 0.07 0.26 0.00 1.00
Van 0.07 0.25 0.00 1.00
N 9694

Note: The table displays summary statistics of the main variables of our sample from the Wards Automotive Yearbooks. An observa-
tion is defined as a model-year pair. Prices are in thousands of 2015 US Dollars. Physical dimensions are in inches and curbweight is
in pounds. The Electric dummy refers to EV (electric vehicles) and PHEV (plug-in hybrid electric vehicles). Observations with price
higher than 100 thousands dollars are dropped.

E.2 Testing the Identification Assumption

We are able to test the identification assumption in Equation (18) leveraging the addi-
tional data on product characteristics available for the US auto market. The identifica-
tion assumption relies on the orthogonality between demand shocks innovations, uit,
and lagged log prices and quantities. Under the assumption in Equation (16), the iden-
tification assumption between demand shocks innovations and lagged log prices can be
rewritten as:

E [φit|gi (φit−1;ϱ) , log pit−1] = gi (φit−1;ϱ) + α log pit−1.

where α is expected to be equal to zero when the orthogonality condition holds. Under the
assumption that the demand shock process is a stationary AR(1) process, gi (φit−1;ϱ) ≡
ρφit−1 + (1 − ρ) ϕi as in Equation (17), we use the set of characteristics available in our
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dataset as a proxy for φit and test whether the current value of product characteristics are
correlated to lagged log prices after controlling for lagged characteristics. In other words,
for each characteristic k, we estimate the following specification:

xkit = α log pit−1 + ρ′
k xit−1 + ηt + γi + ϵit, (E.1)

where xit−1 is the entire set of lagged product characteristics. Table E.2 reports the set
of coefficients estimated using Equation (E.1). No estimated α̂ coefficients are statisti-
cally different from zero at standard level of significance, validating our identification
assumption.A21 Moreover, all product characteristics exhibit a strong degree of autocor-
relation, supporting our choice for the process of demand shocks.A22 We also standardize
all variables and re-estimate Equation (E.1) in order to compare the coefficient of lagged
price to the coefficients of lagged characteristics in terms of magnitude. Table E.3 shows
that lagged product characteristics still exhibit strong and significant correlations, while
lagged prices are not correlated to current product characteristics.

A21The only exception is Years since Design, which exhibits a statistically significant positive correlation
with lagged price at the 5% significance level.

A22The only exception is Truck, which exhibits a weak autocorrelation.
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E.3 Heterogeneity Bias in Elasticity Estimation

E.3.1 A Theory of Heterogeneity Bias

We can build some intuition about the drivers of the heterogeneity bias in the estimation
of demand elasticities in the following simplified setting. Consider a stylized demand
model featuring heterogeneity in elasticities of substitution of the form

∆ log qit = −σit ∆ log pit + ∆φit,

with an extral cost shifter wit such that ∆ log pit = ζ wit + vit where E [witvit] = 0 and
E [wit∆φit] = 0. Consider an estimator that aims to estimate the mean elasticity using a
CES demand approximation of this model with the following estimator

σ̂ ≡ −E [wit ∆ log qit]

E [wit ∆ log pit]
.

If the underlying demand system is indeed CES, this estimator is unbiased. However, in
the presence of heterogeneity, we have

σ̂ =
E [σit wit ∆ log pit]

E [wit ∆ log pit]
,

= E [σit]−
C (σit, wit∆ log pit)

E [wit ∆ log pit]
,

= E [σit]−
C
(
σit, w2

it
)

E
[
w2

it
] − C (σit, witvit)

E
[
w2

it
]

To simplify the setting, let us assume that C (σit, witvit) = 0 to find

σ̂ = E [σit]−
C
(
σit, w2

it
)

E
[
w2

it
] .

We find that the estimated CES elasticity is below the population mean of the elasticities
if there is a positive covariance between the elasticity parameters and the magnitude of the
cost shifter. This would indeed be the case if products with higher own-price elasticities
of demand are those that have more volatile prices.

We test whether the data we use in our setting are consistent with the negative het-
erogeneity bias we document. Figure E.1 below confirms the presence of a strong posi-
tive covariance between the estimated own-price elasticity in the Kimball model and the
volatility of price changes, after absorbing for variety and year fixed effects (robust to
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Figure E.1: Covariance Own-price Elasticity - Price Change Volatility

Note: The figure reports the binscatter relationship between the estimated own-price elasticities of the Finite-Finite Kimball (estimated
using DP) and the volatility in price changes. We absorb for variety and year fixed effects. We plot the 95

alternative set of fixed effects, such as sector-year).

E.3.2 Evidence in the Data

E.4 Details on the Mixed Logit Specification

E.4.1 Mixed Logit Demand

The standard Mixed Logit model provides a usefull benchmark setting that allows for
variable and heterogeneous cross-product substitution elasticities. We provide a defini-
tion of this model that is consistent with a corresponding market demand system ratio-
nalizable along the lines considered in Section 2. We consider a differentiated product
demand in which consumers make a discrete choice among the car models available j
and an outside “no-purchase” option. For each household n, we have that the utility
from consuming product i is:

un
t = max

j

{
yn

t − pit

pot
+
(
β̃n
)′

xit + ξ̃n
it +

1
αn ϵn

it

}
, (E.2)

where pot is the price of the consumption of non-auto (outside) goods, and xot = 0 is the
characteristic of buying no automobile, yn

t −pit
pot

is the quantity of outside good purchased
after selecting automobile model i,xit is a vector of vehicle attributes, pit is the price of
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automobile model i, ξ̃n
it is an unobserved vehicle-specific term with ξn

ot ≡ γt for the de-
mand shifter for the outside good (no purchase), and ϵn

it is an idiosyncratic consumer-
vehicle specific term distributed according to a type-II extreme value distribution. As is
standard, we model consumer heterogeneity using parametric distributions allowing for
unobservable heterogeneity. The corresponding uncompensated (Marshallian) demand
is given by

q̃uc
i (pt; yt) = ∑

n
ωn

exp
(
−αn pit

pot
+ x′

jtβ
n + ξn

it

)
exp (γt) + ∑i′ ̸=o exp

(
−αn pi′t

pot
+ x′

i′tβ̃
n + ξn

i′t

) , i ̸= o, (E.3)

where ωn is the weight corresponding to household n, where we have defined βn ≡
β̃n/αn and ξn

it ≡ ξ̃n
it/αn.

E.4.2 Estimation

We closely follow Grieco et al. (2021) for the estimation of this demand system. In the first
step, we leverage household demographics and second choice moments to estimate con-
sumer heterogeneity and the mean valuation. In the second step, we use the estimated
mean valuation to estimate the mean taste for product characteristics, employing an IV
regression where prices are instrumented with the real exchange rate or using DP instru-
ments. We differ from Grieco et al. (2021) in the treatment of the outside option. We proxy
the price of the consumption of non-auto (outside) option, pot, as the Personal Consump-
tion Expenditure (PCE) price index from the BEA, net of the price for the purchases on
the auto market. In other words, we define the outside good as the PCE consumption
basket, excluding the expenditure on the auto market. We then divide the prices of the
car models, pit, by the price of the consumption of non-auto (outside) option pot as in the
expression in Equation (E.3).

E.4.3 Mixed Logit Price Index for the Auto Industry

We derive the analytical exact price index of the preferences in Equation (E.2). Let E (u;pt, ξt,xt)

be the expenditure function for the demand system, which we can write as

E (u;pt, ξt,xt) = pot

[
u −

(
∑
n

ωn

αn

)
γt − ∑

n

ωn

αn log

(
1 + ∑

j ̸=o
exp

(
δjt + µn

jt

))]
, (E.4)
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where we have defined δit and µn
it as

δit ≡ −αpit + β
′
xit + ξ it − γt,

µn
it ≡ − (αn − α)

pit

pot
+ x′

jt
(
βn − β

)
+ ξn

it − ξ it.

where α ≡ ∑n ωnαn, β ≡ ∑n ωnβn, and ξ it ≡ ∑n ωnξn
it denote the household means, and

γt denotes the quality of the outside good.
We construct a price index for the auto industry based on the Mixed Logit demand.

Following the construction in Section 2.4.3, the set of automobiles constitute a subcate-
gory of all products in the demand system that excludes the outside good. The Divisia
index for the entire demand system between two consecutive periods can be written as
follow

log Dt ≡ log
E (ut−1;pt, ξt,xt)

E (ut−1;pt−1, ξt−1,xt−1)
, (E.5)

= log
(

po,t

po,t−1

)
+ log

1 −

(
∑n

ωn

αn

)
(γt − γt−1) + ∑n

ωn

αn log

(
1+∑j ̸=o exp

(
δjt+µn

jt

)
1+∑j ̸=o exp

(
δjt−1+µn

jt−1

)
)

yt−1/po,t−1

 .

(E.6)

which is found using Equation (E.4) and noting that

ut−1 =
yt−1

po,t−1
+

(
∑
n

ωn

αn

)
γt−1 + ∑

n

ωn

αn log

(
1 + ∑

j ̸=o
exp

(
δjt−1 + µn

jt−1

))
.

Equation (E.6) is not directly comparable to the price indices constructed using Propo-
sition A.4 for the Kimball and CES cases as it accounts for the dynamics of the price and
quality of the outside good. We can define the Divisia index for the auto-industry as

log Dauto
t ≡ log

E
(
ut−1;po,+

t , ξo,+
t ,xt−1

)
E (ut−1;pt−1, ξt−1,xt−1)

,

= log
(

po,t

po,t−1

)

+ log

1 −

(
∑n

wn

αn

)
(γt − γt−1) + ∑n

wn

αn log

(
1+∑j ̸=o exp

(
δjt−1+µn

jt−1−(γt−γt−1)−αn pi,t−1

(
1

po,t
− 1

po,t−1

))
1+∑j ̸=o exp

(
δjt−1+µn

jt−1

)
)

yt−1/po,t−1

 ,
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where po+
t−1 ≡

(
pot, p1,t−1, · · · , pJ,t−1

)
and ξo+

t−1 ≡
(
γt, ξ1,t−1, · · · , ξ J,t−1

)
are the vectors of

prices and demand shifters that are only adjusted for the next-period outside good. We
can now back out the contribution of the auto market to the aggregate price index net of
the dynamics of the outside good:

∆ log Pauto
t =

1
1 − so,t

(
log Dt − log Dauto

t
)

, (E.7)

where sot is the expenditure share of non-auto (outside) goods in the total consumption
basket, which is measured by the per-capita personal consumption expenditure net of
purchases in the auto market using data from the BEA.

E.5 Details on the Mixed CES Specification

We face several challenges in using the construction in Section E.4.3 to build a price in-
dex for the auto industry. The Mixed Logit demand is quasi-linear and specifies the de-
mand for automobiles relative to an outside good. As Equation (E.7) shows, we need to
determine the price and the share of consumption expenditure on this outside good to
construct the desired price index. The simplest choice, the one we make here, is that the
outside good is the remainder of household consumption, with a price pot corresponding
to PCE net of automobile prices. However, in this setting, it is not clear that the pat-
terns of substitutability implied by the Mixed Logit model between each product and the
outside good capture that between new automobile purchases with alternative modes of
transportation/commuting, or with the rest of household expenditure. More importantly,
since the share of automobile expenditure in total household expenditure is fairly small,
the price index in Equation (E.6) is dominated by the price of the oustide good and Equa-
tion (E.7) is highly sensitive to the fluctuations in the share of automobile purchases in
total expenditure, as is evident from Figure 5.

To address these issues we additionally introduce an alternative Mixed CES demand
system, which closely parallels the construction and the estimation of the Mixed Logit
demand but allows us to assume separability between the demand between the auto in-
dustry and the remainder of the consumer expenditure.

E.5.1 Mixed CES Demand

We define the Mixed CES demand as an income-invariant system defined only over the
bundle of new automobile purchases. We assume that all consumers dedicate the same
level yauto to their expenditure on the auto sector. Allowing for non-integer quantities, we
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assume that once a consumer chooses an automobile model, they spend the budget they
have allocated to their automobile purchases to this model, buying yauto

t /pit units of that
car. Accordingly, we assume that the utility of consumer n at time t from their automobile
purchases is given by

un
t = max

i

{
log
(

yauto
t
pit

)
+
(
β̃n
)′

xit + ξ̃n
it +

1
αn ϵn

it

}
,

where all the other variables are defined as in Equation (E.2). The probability of choosing
item i by household n is then given by

Pn
t (i) =

exp
(
−αn log pit + x′

jtβ
n + ξn

it

)
∑i′ exp

(
−αn log pi′t + x′

i′tβ̃
n + ξn

i′t

) , (E.8)

while the quantity purchased across all households is given by qit = yauto
t /pit ·∑n ωnPn

t (i).
The corresponding compensated (Hicksian) demand is given by the following income-
invariant expression

s̃i (pt; u) = ∑
n

ωn
exp

(
−αn log pit + x′

jtβ
n + ξn

it

)
∑i′ exp

(
−αn log pi′t + x′

i′tβ̃
n + ξn

i′t

) ,

where ωn is the weight corresponding to household n, where we have defined βn ≡
β̃n/αn and ξn

it ≡ ξ̃n
it/αn. Note that the probability of choosing item i by household n is

E.5.2 Estimation

In terms of estimation, the key difference from the Mixed Logit model lies in the obser-
vation that, in this model, the probability of choosing item i at time t is the same as the
expenditure share of the model, i.e.,sit = ∑i ωnPn

t (i). Accordingly, we adapt the estima-
tion strategy of Grieco et al. (2021), modifying the first step to recover mean valuations
using products’ expenditure shares rather than their sales shares. Since the estimation re-
quires us to specify the expenditure share of the oustide option, we need to determine the
expenditure share of the outside good, or equivalently, the price of the outside option, pot.
We assume the price of the outside transportation option to be $5,000, which allows us to
generate a distribution of expenditure shares mirroring the distribution of sales shares.

Table E.4 presents the estimated elasticities from the Mixed CES model and compares
them to those from alternative specifications. The first three columns report the estimated
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price coefficients under the CES specification: (i) using OLS estimation, (ii) using the RER
variable as a cost shock instrument (henceforth IV), and (iii) applying our DP approach.
The remaining columns show various moments of the distribution of the estimated own-
price elasticities for the two models with variable elasticities—namely, the Mixed CES
and Kimball specifications. Consistent with the findings from the Mixed Logit model, we
observe that all three moments of the distribution of the estimated own-price elasticities
in the Kimball model are similar to those in the Mixed CES model.

Table E.4: Comparing Own-price Elasticities

CES Mixed CES Kimball

OLS IV DP IV IV DP
σ 1.35 4.67 4.51

(0.25) (1.47) (0.13)
Own-price Elasticity:
Weighted Mean 4.62 4.46 8.09 5.60 5.79

(0.00) (0.00) (0.02) (0.01) (0.01)
Mean 4.65 4.50 8.54 8.90 8.68

(0.00) (0.00) (0.02) (0.05) (0.05)
Median 4.66 4.51 8.42 7.41 7.45

(0.00) (0.00) (0.03) (0.03) (0.03)
IQR 0.02 0.02 2.60 3.54 3.16

(0.00) (0.00) (0.03) (0.07) (0.06)

Note: The table reports the estimated own-price elasticities from the full sample. Each column corresponds to a different econometric
model: CES OLS, CES IV, CES DP, Mixed CES IV, Kimball IV, and Kimball DP. For the VES cases (Mixed CES and Kimball) we
report a set of moments from the distribution of the estimated own-price elasticities, while for the CES cases, we also report the
estimated price coefficients. We report the mean and the median elasticity together with the expenditure weighted mean elasticity
and the interquartile range. We consider the Finite-Finite case for the Kimball specification. For the Kimball and CES specification, we
compute the own-price elasticities using Equation (??) and (11). We report bootstrapped standard errors for the set of moments from
the distribution of the estimated own-price elasticities. For the CES price coefficeints, standard errors are clustered at product (model)
level. All estimated quantities use the full sample.

E.5.3 Mixed CES Price Index for the Auto Industry

Given the separability between auto and non-auto purchases and the income-invariance
properties of the Mixed CES demand system, it is straightforward to construct the price
index. This price index is given by

log Pt = ∑
n

ωn

αn log

(
∑

i
exp

(
−αn log pit + x′

jtβ
n + ξn

it

))
.
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We can also use the approximation by computing the matrix Σt, and applying the results
in Proposition A.4 to construct the price index for the Mixed CES case.

E.6 Inferred Quality and Product Characteristics

In this section, we quantify the correlation between our inferred measures of quality and
the product characteristics valued by consumers available in our dataset, which is not
feasible using standard customs data. We again compare the results of our DP approach
for the CES specification to alternative estimation strategies such as OLS and the standard
IV approach using RER. We also explore the implications of accounting for heterogeneity
in price elasticities for the inferred quality (compared to the standard CES case).

Using detailed data on the US automobile market allows us to examine whether our
approach retrieves meaningful measures of quality. We examine this question by quanti-
fying the correlation between our inferred measures of quality and the product character-
istics valued by consumers available in our dataset, which is not feasible using standard
customs data. We again compare the results of our DP approach for the CES specification
to alternative estimation strategies such as OLS and the standard IV approach using RER.
We also explore the implications of accounting for heterogeneity in price elasticities for
the inferred quality (compared to the standard CES case).

In the CES case, the inferred quality of each product i at time t is computed accord-
ing Equation (15) in which we use the elasticity estimated using the DP approach and
reported in Table 3. Similarly, inverting the Kimball demand, we infer the measure of
product quality for the Kimball case using Equation (15).A23 We then study the correla-
tion between the quality measure φit (inferred using either the CES or Kimball estimates)
and a subset of product characteristics tightly linked to product quality in this specific
market, e.g., horsepower, footprint, miles-per-dollar and style (i.e. truck, suv, and van):

φit = βxit + ηt + γi + ϵit, (E.9)

where xit is the set of characteristics listed above. The correlation coefficients estimated
from regression (E.9) are compared against the coefficients estimated from Equation (29)
above.A24

Figure E.2 shows that the inferred quality estimated using DP and using the cost shock
(RER) identification are related to product characteristics almost identically, in both the

A23See the discussion in Appendix B.2.2 for more details on inverting the Kimball demand.
A24In other words, we re-estimate Equation (29) above using the same set of product characteristics and

fixed effects as in regression (E.9).
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Figure E.2: Correlation between Inferred Quality and Product Characteristics

Note: The figure reports the relationship between product characteristics and inferred quality. In the CES DP case, the inferred quality
measure follows from Equation (15). For the Kimball specification, inferred quality is obtained inverting demand as in Appendix
B.2.2. The coefficients referring to the DP approach (CES and Kimball) and the Kimball IV case are obtained from regression in
Equation (E.9). We consider the following product characteristics: horsepower, footprint, miles-per-dollar and style (suv, truck, van).
Continuous variables are in log. The coefficients referring to the OLS and IV estimates of the CES specification are obtained from
Equation (29), where product characteristics are used to proxy for quality. All regressions use the entire sample and includes time
and product (model) fixed effects. Standard errors are clustered at the producer level, the bands around the estimates show the 95%
confidence intervals.

CES and the Kimball specifications. This is a direct consequence of the ability of the DP
approach to correctly estimate own-price elasticities, as shown in the previous section.
Notice that the correlation between inferred quality and product characteristics differs
across model specifications. Even though the correlations exhibit the same qualitative
patterns, the magnitude is stronger in the CES specification compared to Kimball. The
quantitative difference across models suggests that accounting for heterogeneity in price
elasticity has a first order role in quantifying the role of quality.
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E.7 Additional Tables and Figures

Figure E.3: Comparison across Kimball Specifications

Note: The left panel shows a binscatter representation of the relationship between sales in millions of US dollars and the Kimball
own-price elasticities estimated using the DP approach. The right panel shows the relationship between sales in millions of US dollars
and Kimball price elasticities estimated using the IV approach. All three Kimball specifications (Finite-Finite, Finite-Infinite, and
Klenow-Willis) are considered. Observations with sales less than $10mil are dropped.

Figure E.4: PCA - Correlation Market Shares
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Note: The left (right) panel shows the relationship between the (log) expenditure shares and the first (second) principal component
scores from a singular value decomposition of product characteristics. The following characteristics are included: footprint, horse-
power, miles-per-gallon, curbweight, height, style dummies, luxury dummy, electric dummy, US brand dummy. We standardize all
variables before performing the singular value decomposition.
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Table E.5: PCA - Correlation Market Shares

Full Sample Car Suv Truck Van
1st Principal Component 0.12 0.07 -0.03 0.17 0.15

(0.01) (0.01) (0.01) (0.02) (0.03)

2nd Principal Component -0.31 -0.32 -0.53 -0.90 -0.15
(0.01) (0.02) (0.02) (0.06) (0.05)

N 9694 6126 2242 684 642

Note: The table reports the correlation coefficients between the log expenditure shares and the first two principal component scores
from a singular value decomposition of product characteristics. The following characteristics are included: footprint, horsepower,
miles-per-gallon, curbweight, height, style dummies, luxury dummy, electric dummy, US brand dummy. We standardize all variables
before performing the singular value decomposition. The first column uses all sample, while all the remaining columns consider a
product style (car, SUV, truck, and van) at the time.

Table E.6: PCA - Variance Decomposition

Full Sample Car Suv Truck Van
1st Principal Component 33.83 36.99 41.32 55.65 42.06
2nd Principal Component 13.37 14.06 14.32 10.79 14.56

Note: The table reports the variance explained by the first two principal components from a singular value decomposition of prod-
uct characteristics. The following characteristics are included: footprint, horsepower, miles-per-gallon, curbweight, height, style
dummies, luxury dummy, electric dummy, US brand dummy. We standardize all variables before performing the singular value de-
composition. The first column uses all sample, while all the remaining columns consider a product style (car, SUV, truck, and van) at
the time.

Figure E.5: Cross-price Elasticities

Note: The left panel shows the matrix of cross-price elasticities from the Kimball (left) and the BLP (right) specifications for the year
1981. Cross-price elasticities for the Kimball specification are constructed using Equation (11), while BLP cross-price elasticities are
constructed according the correction in footnote ??. We report the lower half as the matrix is symmetric by construction. The yellow
area represents cross-price elasticities above the 90th percentile, the blue area represents cross-price elasticities above the median and
below the 90th percentile, the red area represents cross-price elasticities below the median. Products are ordered on the horizontal
axis in descending order by market share. The matrix is smoothed with a gaussian kernel and discretized. The right panel shows the
histograms of the cross-price elasticities from the Kimball (red, right axis) and the BLP (blue, left axis) specifications for the year 1981.
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Figure E.6: Correlation between Inferred Quality and Product Characteristics

Note: The figure reports the relationship between product characteristics and inferred quality. In the CES DP case, the inferred quality
measure follows from Equation (15). For the Kimball specification, inferred quality is obtained inverting demand as in Appendix
B.2.2. The coefficients referring to the DP approach (CES and Kimball) and the Kimball IV case are obtained from regression in
Equation (E.9). We consider the following product characteristics: horsepower, footprint, miles-per-dollar and style (suv, truck, van).
Continuous variables are in log. The coefficients referring to the OLS and IV estimates of the CES specification are obtained from
Equation (29), where product characteristics are used to proxy for quality. All regressions use the entire sample and includes time and
producer fixed effects. Standard errors are clustered at the producer level, the bands around the estimates show the 95% confidence
intervals.

Figure E.7: Quality, Own-price Elasticity and Markups

Note: The left panel shows the relationship between the measure of inferred quality and the markups. The right panel shows the
relationship between the measure of inferred quality and the demand elasticity estimated from the Finite-Finite Kimball specification
using the DP approach. Markups are computed under the assumption of monopolistic competition, µit = 1

σit−1 , where σit is the
estimated own-price elasticity. We approximate the relationship using a polynomial of degree 3 after absorbing model fixed effects.
We report 95% confidence intervals. Standard errors are clustered at the model level.
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Figure E.8: Marginal Cost and Quality

Note: The right panel shows the relationship between the implied marginal cost and a proxy of input costs, namely the price of steel
multiplied to the weight of each vehicle. The left panel shows the relationship between the implied marginal cost and the measure
of inferred quality estimated from the Finite-Finite Kimball specification using the DP approach. The marginal cost of each model is
inferred as follow: mcit =

pit
1+µit

, where µit =
1

σit−1 is the markup computed under the assumption of monopolistic competition and
σit is the estimated own-price elasticity. We approximate the relationship using a polynomial of degree 3 after absorbing model fixed
effects. We report 95% confidence intervals. Standard errors are clustered at the model level.

Figure E.9: Marginal Cost and Product Characteristics

Note: Each panel shows the relationship between the inferred marginal cost and a product characteristic. We consider horsepower
(left), footprint (center) and miles-per-gallon (right). Marginal cost is inferred from mcit =

pit
1+µit

, where µit is the markup computed
under the assumption of monopolistic competition using the own-price elasticities estimated from the Finite-Finite Kimball specifica-
tion using the DP approach. All variables are in level.
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Figure E.10: Trends in Markups and Marginal Cost

Note: The left panel shows the estimated trend in the own-price elasticity over the period 1980-2018. The center panel shows the
estimated trend in the markup over the period 1980-2018. Markups are computed under the assumption of monopolistic competition,
µit =

1
σit−1 , where σit is the estimated own-price elasticity. The right panel shows the estimated trend in the real marginal cost. The real

marginal cost is computed from mcit = pit
1+µit

using prices in 1980 US dollars. Trends are obtained regressing the outcome variables
at the product-year level on a time trend, controlling for product fixed effects. In the marginal cost case, we also control for product
characteristics such as horsepower, miles-per-dollar, footprint, curbweight, years since design, style, electric and luxury dummies.
The BLP and Finite-Finite Kimball specifications (both IV and DP) are considered.
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